[18 Sep 2024] Finishing analysis of RANKING. Starting with algebraic matching algorithms $x = \frac{e}{e^{-1}}$ $h(z) = e^{z-1}$ OFFILME Online $y_{2} = \alpha \cdot e^{-0.8} = \frac{z_{2} = 0.1}{z_{3}} = 0.4$ zy=0.6 REMAINS TO SHOW: E[y] is feasible For DUAL- $\forall edge \{u,v\}$ we need $\mathbb{E}[y_u] + \mathbb{E}[y_v] \ge 1$ Fix an edge $\{u,v\}$. Let $Z_{-u} (z_u)_{u \neq u}$ Défine a quartier 2 dépendènce en Zin by number RANKING on Gilu? using some random prisidies ton , see where v gets matched. unmatched >> モニー $\overline{z} = \overline{z}_{u'}$ matched to ie >> show: We will r Z $E[y_{u}] \ge \alpha \cdot S h(t) dt$ $\mathbb{E}\left(y_{\nu}\left|\frac{2}{z_{\nu}}\right|^{2} \propto \left(1-h\left(z^{c}\right)\right)$ (2)26 $\mathbb{E}\left\{y_{\mu}+y_{\nu}\left|\mathcal{Z}_{-\mu}\right\rangle\right\} \approx \left(1-h(z^{c})+\int_{z}h(t)dt\right)=a\cdot\frac{1}{z}$ Summing

To show () RANKING runs on (J. F Lemma When then n will definitely be $\mathbb{Z}_{1} < \mathbb{Z}_{1} < \mathbb{Z}_{1}$ marched. Proof. Either a is natched before v avrives, or v picks u when provided that En < Z it arrives T- show Q. Lemma. When RANKING runs on G, IF Z < I, v definitelys gets matched to some v such that Zw SZ. Prof. Induction on arrival time of vertices Induction hypothens: for every v'ER the set of all free verticer when v' arrives in G is a superset of the free vertices when v' wrives in Glauz. $w_{v} = q() - h(z_{w}))$ if (y_{w}) matched Lor. $\geq \alpha(1-h(2))$

•		•	•	•		•	•	•	•	•	•	•	*	•	•		•	*		•	*			*					•	•	•	*	•	•			•		•		•	•	•		•	•
•			٠		•	•	•								•													•	•			•	•	•		•										
	•	٠		•	٠	٠	٠		•		٠	•	٠	٠	٠	•	•	٠					٠	•		•	٠		٠		•	٠	•	•	• •		•	•		٠	•	٠	٠	•	٠	٠
•		٠	•		٠	•	٠	•	•	•	•	•	٠	•	•	٠	•	٠	•		٠	٠		٠	٠	•	٠		٠	٠	•		*	•	•		*	٠	٠	•	٠	٠	٠	•	•	•
•	٠	٠	٠	٠		٠	٠	٠	•	٠	٠	•	٠		٠		٠	٠	٠	•	٠	•	٠	٠	•	٠		•	٠		٠	٠	٠	•	•	•		٠	٠	۰	٠	۰	٠	•		•
•	٠	٠	٠	•	•	•	•	•	•	•	•	٠	•	۰	•	٠	•	•			٠	٠		+	•			٠	0	0	٠	0	*	•	•	٠	0	•	•	٠	٠	0	0	٠	٠	
•	•	٠	•	•	•	•	٠	•	٠		٠	•	٠	•	•	•	٠	•	•		٠	٠	•		٠	•	•		•	•	•	•	•	•	•		•	•	•	•		٠	•	•	•	•
•	•	٠	•	•	۰	٠	٠	•	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	•	٠	•	•	•		•	•		•	•	•	•	• •	٠		•			•	•		•		٠
•	٠	•	٠	٠	٠	٠	٠	٠	•	•	٠		٠	•	٠	*	•	٠	•		٠	•	٠	•		•	•	•	•	•	•	•	•	•	• •	•	٠	•	•	٠	•	٠	٠	•	٠	
•	•		•	•	0	٠	٠	•	•		٠	٠	٠		٠	•	٠	0	•	•	٠	٠	٠		٠	٠		•			٠			•	•	٠		٠		٠	٠	0	۰	٠		•
٠	•	•	•	•	•	•	•	٠	•	•	۰	•	0	•	٠	٠	•	•		•	٠	•	•		•	•		•	•	•	•		•	•	• •		•	•	•		•	•	•	•		•
*	•	•	•	•	•	•	٠	*	•	•	٠	•	٠	•	٠	*	٠	٠	•		٠	•	•	•		•	•		•	•	•	•	•	•	• •		•	•	•	•	•	٠	•	•	•	
	•	•	•	•	•	•	٠		٠	•	٠		•	٠	•	•	•	٠	•	•	٠	•	•			•	•		٠		٠	•	•	•	• •	•	•		٠	٠	•	۰	٠	٠	٠	•
•	•	•	٠	•	•		٠	•	٠	•	٠		•	•	•	•	•	٠	•	•	٠	•	•	•		•	•	•	٠	•	•	•	•	•	• •	•	•		٠	٠	•	٠	٠	٠	۰	
•	٠	*	٠	٠	٠	٠	٠	•	•	•	•	•	٠	•	•	•	•	٠	•		٠	٠	٠	*	•	•	*	•	٠	*	•	*	*	•	• •	•	٠	•	*	٠	*	٠	*	•	٠	•
•	٠	•	٠	٠		٠		•	٠	•	۰	٠	۰	•	٠	٠	•	۰	•	٠		٠	٠		•	٠		٠	۰		•		٠	•	•	٠		٠	•	۰	•			•	0	•
•	•	•	٠	•	٠	•	٠	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	•	•	۰	٠	۰	•	٠	0	٠	•	•	٠	•	•	•	•	٠		۰	٠	٠	•
٠	•	٠	•	•	٠	•	•	٠	•	•	٠	•		•	•	*	•	•	•	•	٠	•	•	•	•		•		•	•	•	•	•	• •	• •	•	•	•	•	•	•	٠	•	•	•	•

Matchings and Determinants BIPARTITE PELFECT MATCHING DECISION PROBLEM. - (...) Given Lipsitive G= (V,E), V=LUR where |L| = |R| = ndors & have a perfect matching! For a bijnette G with |L|=|R|=n the bipartite adjacency matrix is defined by minhering the vertices L= {u,...,un} $R = \{V_1, \dots, V_n\}$ and setting A to be the matrix with $\alpha_{i} = \begin{cases} 1 & \text{if } \int u_{i}v_{j} & \text{if } E \\ 0 & \text{if } \int u_{i}v_{j} & \text{if } E \end{cases}$ Ex

	•	•		•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	•	•		٠	•		•			*	•	•	*	•	•	•		•	*	•	٠	٠		*	•
	•	٠	•	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•	•	•			•			٠					٠			•			•		*	•		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	٠	•		•		٠	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•		•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠		٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰		٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	٠		*	•	•	*	•	•	•	•	•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	•	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	۰	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	٠	٠	•	٠		•	*	٠	٠	٠	•	*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
•	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰	٠	•	۰	٠	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•