9 Sep 2024 Online Matching Announcements. 1) P. Set 1 due Fri, 9/13, 11:57 pr With 48 hour grace period. Z) Office hours - Linda Tues 11:30-12:30 (RH 574) - August Wed 10-11 (RH 400) - ne Wed 3:30-5 (Gotes 317) Linda subbins this week In the online matching problem there's a Lipsrifice graph G = (V, E), V = L u R, In the online Sunt: the vertices in time zero. L are present at the vertices in R are V1, V2, ..., NT and Vt arrives at time tellingt?. - Vertises in R must be matched upon orrival, or else remain unmatched torever. The neighbors of vy became known when it avoives, not before. Once a match (u,v) is made it · · · · · · · · · · · · can't be broken off.

How to evolute algorithms? Goal. Make as many matches as possible. i.e. max-cardinality matching. Not always possible. For any online algorithm there are some input sequences where it makes only one match, though in hiradsight two were passible. There is a simple aborthin that makes at least valt as many matches as the main matching, on every preside input sequence. "GREEDY is 2-competitie." The algorithm is GREEDY. When Vy arrives if it has an unmatched neighbor, Match it to any such neighbor.

Let Mt and MG denote on max notching and a greety matching, respectively. L* = flett endprints of edges in M*2 $L \in \mathcal{A}^{-1}$, $M \mathcal{A}^{-1}$, $M \mathcal{A}^{-1}$, R* = Srift endprints of edges in M*2 $R = \{1, \dots, M\}$ For each edge VERXRG there is an edge (u,v) eMX with wells. This give an injection from R*1R_2La. $|\mathcal{M}^{\star}| = |\mathcal{R}^{\star}| = |\mathcal{L}^{\star} \cap \mathcal{R}_{G}| + |\mathcal{L}^{\star} \setminus \mathcal{R}_{G}|$ $\leq |R_{G}| + |L_{C}|$ = 2. M For deterministic aborthous: - any greedy algorithm is dr competile - vo algorithm is better than 2-competitie. For randomized algorithms, the god is: maximize expected number of edges in the matching.

A randomized algorithm that outputs a (random) marching MRAND/ is X-competitive if it satisfies $E[M_{RAND}] \ge \frac{1}{\alpha} \cdot [M^*]$ on every mout sequence with Mt density max - mortching. RANKING (Karp-Vozirani-Vozirani) GREEDY with random consistent the breaking. At time \$, sample a vandom permutation Each time a vertex Vt arrives with 1 or more fore relighbors, match to the fore neighbor that occurs earliest in this rand perm.

•	•	•	•	•	•		•	•		ب				•	•	•	*	•	•	*			•		•	•	•	•	•	•	*	•	•	• 1	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	٠	•	٠	•	•	٠	٠	•	٠	٠			٠	٠	•	٠	•	٠		٠	•		•	•	•	٠	٠			•	•	•		•	•		٠		٠	•	•	•
								•		٠	٠		•	•	٠		٠	٠				٠		٠		۰	•	•		٠	٠	٠	٠	٠	•	•	•	•	٠					•	•	•
										•	٠				٠			٠				•		•		•	•			•	•	٠	•	•	•	•	•		•	•		•	•	•	•	•
	•		•	•	٠	•	٠	•	•		٠	•		٠			٠	٠	•	٠	٠	٠		٠	•			•		٠	٠	٠	•		•	•		•	•	٠	٠	0	٠	•	•	
		*						•		٠	٠		•	٠	٠		٠	٠				٠		٠		٠		•		٠	•	٠	٠	٠	•	•	•	•	٠		•			•	*	•
		*					٠	•		٠			•	•	٠		٠	٠	•			٠		٠		٠	•	•		٠	•		•	٠	•	•	•	•	•		•	٠	*	•	•	•
										٠	٠				٠		٠	٠		٠		٠		٠		٠		•		٠	٠	٠	٠	•	•	•		•	•		•	٠		•	•	•
		*						•		٠	٠			٠	٠		٠	٠				٠		٠		٠			•	٠	•	٠	٠	٠	•	•	•	•	٠	*	•			•	*	•
٠	٠			•		٠		٠	٠		٠			٠			٠	٠	٠		•								•	•		٠	•		•	•		•	٠		٠		٠	*	٠	•
•	•	•		•		٠		٠	٠	٠				٠			٠		٠														•			•		•	•		٠		•		•	
•	•			•		•	•	٠	•	٠	•			•			٠	•	•						•	•	•	•			•	•	•	•	•	•	*	•	•	٠	•	•		•	•	
•	•			•		•			•					*																•		•	•	•	•	•	•	•	•	•	•				•	•
														٠			٠													•		•	•	•	•	*	•	•	•	•	•	•	•			
		•					•			•				٠	•		٠									•		•				•	•	•	•	•	•	•	•	•	•	•	•		•	
	•			•					•								٠													•		•	•	•	•	•	•	•	•		•				•	•
														٠	•		٠									•	•			•		•	•	•	•	•	•	•	·	•	•	•	•		*	
		•								٠				٠	٠		٠									•		•			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•