6 Sept 2024 LP Relaxation of Bipartile Matching A fractional matching in a bipartite graph is a vector X= (Xuy) juyi EE that Satisfies $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ $\forall v \in \mathbb{R}^{n}$ $\sum_{u} \chi_{uv} \leq 1$ $\chi_{uv} \ge 0$ & Lunge E Example of Fractoral motiling ... $\frac{\frac{1}{3}}{\frac{1}{3}}$ $\frac{1}{3}$ $\frac{$ matching satisfies Zxw=1 Wu A fractional perfect and $\sum_{n} \chi_{nv} = 1$ $\forall v.$ The cast of a Gractimal matching is $cust(\vec{x}) = \sum_{uvie \in E} C_{uv} X_{uv}$ This problem "relaxes" min-cost bipartite perfect netaling by enlarging the set of potential solutions.

E.g. Fractional matching in non hipartike Jupph could be defined by $\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j$ Vu うがえ $\frac{1}{2}$ A fractured matching that is "larger" that any actual matching, Thm. (Birkhoff - von Neumann) In any bipartite scaph every foorchinal perfect matching is a convex combination of integer-valued pertect natchings. X is a convex combinetion of y, ---, ym means $Z = weights = w_1, \dots, w_M > 0$ Z = 1st, $\chi = W_1 y_1 + H_2 y_2 + \dots + W_N y_M$. . X . Cost (min-cost fractional PM) = cost (min-cost perfect matching)

a o l 3 3 3 c Claimi is min ost perfect B & y o d 1 IC matching. For any freetilinal perfect mething X, Cost (x) = (Xac + 3xad + 3xbc + 4xbd $\chi_{ac} + \chi_{ad} = 1$ $-\chi_{ac}-\chi_{ad}=-1$ $\chi_{bc} + \chi_{bd} = 1$ $\chi_{ac} + \chi_{bc} =$ 2×1+2×1=2 $\chi_{ad} = \chi_{bd} = 1$ $4x_{ad} + 4x_{bd} = 4$ $x_{ac} + 3x_{ad} + 2x_{bc} + 4x_{bc} = 5$ Lower bound on cost of any matching To bound from below the cest of any fraction PM, we can choose coefficients Yn (ueV); that will be used to scale the degree constraints. These can be prisitive negative, or zero.

Scale c-nstraints by yu's and sum up. $\sum_{n \in L} y_u \left(\sum_{v} x_{uv} \right) + \sum_{v \in R} y_v \left(\sum_{n} x_{uv} \right) = \sum_{u \in L} y_u + \sum_{v \in R} y_v$ $\sum_{\{w\}\in E} (y_u + y_v) \times_{wv} = \sum_{u \in L} y_u + \sum_{v \in \mathcal{R}} y_v)$ Always satisfied for any f.p.m. X and any vector y of scaling coeffs, For this equation to be usated we want Vectors y satisfying mese velations are called "dual soluctions" for min-uso fractional perfect matching. For the dual solution to "certify optimality" of a frectional perfect matching, X, ve need $c-st(x) = dual-cost(y) = Zy_u + Zy_v$

•	•	•	•	*	*	•	*	•	•	*	•	•	*	•	•	*	•	*	•	•	*	*	•	*	*	•	•	•	•	*	•	•	•	•	•	•	•	•	•	*	•	•		•	•	•	•
			•	•		•	•	•	•	•			•	•	•		·			•							٠						•	•	•	•	•	•		•	•		•	•		•	
		•	•	•		•	•	•	•	•		•		•	•	•		٠			•		•	•	•						•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
*		•	•	•	•	•	•	•	•	•	•	•			٠	٠	•	٠	*			٠	٠	٠	*		٠				•		*	•	٠	*	٠	٠		•	*	•	•			*	•
	٠		•	•	•	•	•	•	•	•	•	•			٠		•	٠	٠	٠	٠	•	٠	٠	٠	•								•		•	•	٠	•	•		•	•		•		
	•		•				•	•	•	•		•	•	•	•	٠	•	•						•		•	٠				•	•	•		٠	•	•	٠		•	•	•		•	•	•	•
٠	•		•			•	•	•	•	•	٠	•	•	•	•	٠	•	٠			•	٠		•			٠			•	•	•	•		•	•	•	٠	•	•	•	•		•	•	•	•
	•		•				•	•	•	•		•		•		٠	•										٠				•				•	•	•	٠		٠		•			•		
•			•					•	•	•	•	•	•	•	•	•	•						•				•				•		•		•	•	•	•	•	٠	•	•		•	•		•
			•				•	•	•			•	•	•		٠	•										٠				•		•		٠	•		٠		•		•		•	•	•	
				•		•	•	•	•	•					٠			٠					•								•			•	•	•											
			•				•	•		•		•			•	•		٠													•		•	•	•	•		•		•		•		•		•	
				•		•		•		•																										*	•										
				•		•	*	•	•			•			٠								•								•			•	•	•	•										
			•			•	•	•	•		•					•		٠															•	•	•	•	•	•		•				•		•	
				•		•	•	•		•																								•		•											
				•		•	•	•	•	•	•	•	•		•	•		٠	٠		•		•	٠	•							•		•	•	•	•	•		•		•			•	•	
	٠			•	•	•	•	•	*	•	٠	•	•		•	٠	•	٠				٠					٠							•	٠	•	•	٠	•	•		•	•			*	