Finish HopersFt - Karp 14 Sp 2024 Talk about Ll relexation of bipartite matching Lapartale graph 6 Reminder. M matching in G G with edges of M oriented R->L - M and all thes L>R BFS A starting from de a INF IF ve layers we get Rhenting not reach Layer 2 Layer & Leyer 1 Layer all nodes reachable from LOF in GA DEFINITION A blocking set of augmenting paths is a set $P = \langle P_{1, \dots, -, P_{K}} \rangle$ sit. (i) Each P; is M-augmenting. (ii) All edges in all putters in P are (iii) No two paths in P share a common vertex (iv) No proper superset of P has (i)-(iii)

" P is a maximal set of vertex-disjoint advancing M-augmenting paths."	
Algorithm.	$J_{nituralize} \qquad M = \emptyset$
DPS-based algorithm achieves This in U(m) time.	Repeat of Compute G _M and its BFS-layer decomposition. Trind a blacking set P. of M-angmenting paths IP,P.R? MC- M@ P.@P_D@P.K Yuntil P=X.
Bound #	pf iterations Lew?
Lemma. matchings	IF My and My are the sin R consecutive ideations K of Hac loweth of the
shy test	M - augmenting path is stictly

greater than the kength of The shartest M-augmenting path Prof. Let Lo, L.,... denote the BFS layers of GM and suppose I is lowest numbered layer that intersects ROF. (Note d = length of shortest Mi-augmenting path.)

Now suppose u, u, ..., uj is a Shorbest M_agnituting partly, with UFL and wije River () No, U; both free Wirt. M. (2) Edges (u; u; +1) are all ether a. Advancing edges in GM, whose orientation is reversed in GM, tin because (uit, u;) belonged to blocking set P= Mt & Mt+1 $Layer(h_{1}) = Layer(u_{1+1}) + 1$ Advancing edges in both GM, and Ь. $\mathcal{C}_{\mathcal{M}}$ $Layer(u_{1+1}) = Layer(u_1) + 1$ c. Retreating edges in GMt Layer $(u_{iti}) < Layer (u_i)$. Loyer (uiti) 5 1+ Layer (Ui) lowertity holds only in case b. $\mathcal{A} \leqslant (u') \leqslant j$ equality holdo only if every edge of us,..., of satisfies case b. d=j would contradict maximality of P.

After t= 2 m iterations of HK Alg, shortest M- augmenting path has > In vertices. Suppose M* = max matching only $|M^*| = |M_1| + (k) + definition of k.$ M'DM_t contains at least k d'sjoint M_- augmenting pettrs, each having > for vertices $\implies k \sqrt{n} < n \implies k < \sqrt{n}$ at most in iteratives remain. $<\frac{3}{2}\sqrt{n}$ therefore, In total O(m) time per thereitien $\implies O(m m)$ algorithm. I Hers, Shortest park has > 2t wit. $2Kt \leq n \implies K \leq \frac{h}{2E}$ total iters < trk <