
Cornell University, Fall 2024 CS 6820: Algorithms
Lecture notes on spectral methods in algorithm design

Studying the eigenvalues and eigenvectors of matrices has powerful consequences for at
least three areas of algorithm design: graph partitioning, analysis of high-dimensional data,
and analysis of Markov chains. Collectively, these techniques are known as spectral methods
in algorithm design. These lecture notes present the fundamentals of spectral methods.

1 Review: symmetric matrices, their eigenvalues and

eigenvectors

This section reviews some basic facts about real symmetric matrices. If A = (aij) is an
n−×−n square symmetric matrix, then Rn has a basis consisting of eigenvectors of A, these
vectors are mutually orthogonal, and all of the eigenvalues are real numbers. Furthermore,
the eigenvectors and eigenvalues can be characterized as solutions of natural maximization
or minimization problems involving Rayleigh quotients.

Definition 1.1. If x is a nonzero vector in Rn and A is an n − × − n matrix, then the
Rayleigh quotient of x with respect to A is the ratio

RQA(x) =
xTAx

xTx
.

Definition 1.2. If A is an n − × − n matrix, then a linear subspace V ⊆ Rn is called an
invariant subspace of A if it satisfies Ax ∈ V for all x ∈ V .

Lemma 1.3. If A is a real symmetric matrix and V is an invariant subspace of A, then
there is some x ∈ V such that RQA(x) = inf{RQA(y) | y ∈ V }. Any x ∈ V that minimizes
RQA(x) is an eigenvector of A, and the value RQA(x) is the corresponding eigenvalue.

Proof. If x is a vector and r is a nonzero scalar, then RQA(x) = RQA(rx), hence every value
attained in V by the function RQA is attained on the unit sphere S(V ) = {x ∈ V | xTx = 1}.
The function RQA is a continuous function on S(V ), and S(V ) is compact (closed and
bounded) so by basic real analysis we know that RQA attains its minimum value at some
unit vector x ∈ S(V ). Using the quotient rule we can compute the gradient

∇RQA(x) =
2Ax− 2(xTAx)x

(xTx)2
. (1)

At the vector x ∈ S(V ) where RQA attains its minimum value in V , this gradient vector
must be orthogonal to V ; otherwise, the value of RQA would decrease as we move away from
x in the direction of any y ∈ V that has negative dot product with ∇RQA(x). On the other
hand, our assumption that V is an invariant subspace of A implies that the right side of (1)
belongs to V . The only way that ∇RQA(x) could be orthogonal to V while also belonging
to V is if it is the zero vector, hence Ax = λx where λ = xTAx = RQA(x).
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Lemma 1.4. If A is a real symmetric matrix and V is an invariant subspace of A, then
V ⊥ = {x | xTy = 0 ∀y ∈ V } is also an invariant subspace of A.

Proof. If V is an invariant subspace of A and x ∈ V ⊥, then for all y ∈ V we have

(Ax)Ty = xTATy = xTAy = 0,

hence Ax ∈ V ⊥.

Combining these two lemmas, we obtain a recipe for extracting all of the eigenvectors of
A, with their eigenvalues arranged in increasing order.

Theorem 1.5. Let A be an n − × − n real symmetric matrix and let us inductively define
sequences

x1, . . . , xn ∈ Rn

λ1, . . . , λn ∈ R
{0} = V0 ⊆ V1 ⊆ · · · ⊆ Vn = Rn

Rn = W0 ⊇ W1 ⊇ · · · ⊇ Wn = {0}

by specifying that

xi = argmin {RQA(x) | x ∈ Wi−1}
λi = RQA(xi)

Vi = span(x1, . . . , xi)

Wi = V ⊥i .

Then x1, . . . , xn are mutually orthogonal eigenvectors of A, and λ1 ≤ λ2 ≤ · · · ≤ λn are the
corresponding eigenvalues.

Proof. The proof is by induction on i. The induction hypothesis is that {x1, . . . , xi} is a set
of mutually orthogonal eigenvectors of A constituting a basis of Vi, and λ1 ≤ · · · ≤ λi are the
corresponding eigenvectors. Given this induction hypothesis, and the preceding lemmas, the
proof almost writes itself. Each time we select a new xi, it is guaranteed to be orthogonal
to the preceding ones because xi ∈ Wi−1 = V ⊥i−1. The linear subspace Vi−1 is A-invariant
because it is spanned by eigenvectors of A; by Lemma 1.4 its orthogonal complement Wi−1
is also A-invariant and this implies, by Lemma 1.3 that xi is an eigenvector of A and λi is
its corresponding eigenvalue. Finally, λi ≥ λi−1 because λi−1 = min{RQA(x) | x ∈ Wi−2},
while λi = RQA(xi) ∈ {RQA(x) | x ∈ Wi−2}.

An easy corollary of Theorem 1.5 is the Courant-Fischer Theorem.

Theorem 1.6 (Courant-Fischer). The eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of an n−×− n real
symmetric matrix satisfy:

∀k λk = min
dim(V )=k

(
max
x∈V

RQA(x)

)
= max

dim(W )=n−k+1

(
min
x∈W

RQA(x)

)
.
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Proof. The vector spaceWk−1 constructed in the proof of Theorem 1.5 has dimension n−k+1,
and by construction it satisfies minx∈Wk−1

RQA(x) = λk. Therefore

max
dim(W )=n−k+1

(
min
x∈W

RQA(x)

)
≥ λk.

If W ⊆ Rn is any linear subspace of dimension n − k + 1 then W ∩ Vk contains a
nonzero vector x, because dim(W ) + dim(Vk) > n. Since Vk = span(x1, . . . , xk) we can write
x = a1x1 + · · ·+akxk. Rescaling x1, . . . , xk if necessary, we can assume that they are all unit
vectors. Then, using the fact that x1, . . . , xk are mutually orthogonal eigenvectors of A, we
obtain

RQA(x) =
λ1a1 + · · ·+ λkak
a1 + · · ·+ ak

≤ λk.

Therefore maxdim(W )=n−k+1 (minx∈W RQA(x)) ≤ λk. Combining this with the inequality
derived in the preceding paragraph, we obtain maxdim(W )=n−k+1 minx∈W RQA(x) = λk. Re-
placing A with −A, and k with n−k+1, we obtain mindim(V )=k (maxx∈V RQA(x)) = λk.

2 The Graph Laplacian

Two symmetric matrices play a vital role in the theory of graph partitioning. These are the
Laplacian and normalized Laplacian matrix of a graph G.

Definition 2.1. If G is an undirected graph with non-negative edge weights w(u, v) ≥ 0,
the weighted degree of a vertex u, denoted by d(u), is the sum of the weights of all edges
incident to u. The Laplacian matrix of G is the matrix LG with entries

(LG)uv =


d(u) if u = v

−w(u, v) if u 6= v and (u, v) ∈ E
0 if u 6= v and (u, v) 6∈ E.

If DG is the diagonal matrix whose (u, u)-entry is d(u), and if G has no vertex of weighted
degree 0, then the normalized Laplacian matrix of G is

LG = D
−1/2
G LGD

−1/2
G .

The eigenvalues of LG and LG will be denoted in these notes by λ1(G) ≤ · · · ≤ λn(G) and
ν1(G) ≤ · · · ≤ νn(G). When the graph G is clear from context, we will simply write these
as λ1, . . . , λn or ν1, . . . , νn.

The “meaning” of the Laplacian matrix is best explained by the following observation.

Observation 2.2. The Laplacian matrix LG is the unique symmetric matrix satisfying the
following relation for all vectors x ∈ RV .

xTLGx =
∑

(u,v)∈E

w(u, v)(xu − xv)2. (2)
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The following lemma follows easily from Observation 2.2.

Lemma 2.3. The Laplacian matrix of a graph G is a positive semidefinite matrix. Its
minimum eigenvalue is 0. The multiplicity of this eigenvalue equals the number of connected
components of G.

Proof. The right side of (2) is always non-negative, hence LG is positive semidefinite. The
right side is zero if and only if x is constant on each connected component of G (i.e., it
satisfies xu = xv whenever u, v belong to the same component), hence the multiplicity of the
eigenvalue 0 equals the number of connected components of G.

The normalized Laplacian matrix has a more obscure graph-theoretic meaning than the
Laplacian, but its eigenvalues and eigenvectors are actually more tightly connected to the
structure of G. Accordingly, we will focus on normalized Laplacian eigenvalues and eigen-
vectors in these notes. The cost of doing so is that the matrix LG is a bit more cumbersome
to work with. For example, when G is connected the 0-eigenspace of LG is spanned by the
all-ones vector 1 whereas the 0-eigenspace of LG is spanned by the vector d1/2 = D

1/2
G 1.

3 Sparsity and expansion

We will relate the eigenvalue ν2(G) to two graph parameters called the expansion and the
sparsity of G. Both of them measure the value of the “sparsest” cut, with respect to subtly
differing notions of sparsity. For any set of vertices S, define

d(S) =
∑
u∈S

d(u)

and define the edge boundary

∂S = {e = (u, v) | exactly one of u, v belongs to S}.

The sparsity of a vertex set S is

φ(S) =
w(∂S) · d(V )

d(S) · d(V − S)
,

and the sparsity of G is φ(G) = min{φ(S) : ∅ ( S ( V }. The expansion of S is

h(S) =
w(∂S)

min{d(S), d(V − S)}
,

and the expansion of G is h(G) = min{h(s) : ∅ ( S ( V }. Note that for any S,

φ(S) = h(S) · d(V )

max{d(S), d(V − S)}
.
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The second factor on the right side is between 1 and 2, and it easily follows that

h(S) ≤ φ(S) ≤ 2 · h(S),

and that the same relation holds between h(G) and φ(G), although the sets that attain the
minimum in the definitions of h(G) and φ(G) may not be identical to one another.

Thus, each of the parameters h(G), φ(G) is a 2-approximation to the other one. Unfortu-
nately, it is not known how to compute a O(1)-approximation to either of these parameters in
polynomial time. In fact, assuming the Unique Games Conjecture, it is NP-hard to compute
an O(1)-approximation to either of them.

4 Cheeger’s Inequality: Lower Bound on Conductance

There is a sense, however, in which ν2(G) constitutes an approximation to φ(G). To see
why, let us begin with the following characterization of ν2(G) that comes directly from
Courant-Fischer.

ν2(G) = min

{
xTLGx

xTx

∣∣∣∣x 6= 0, xTD
1/2
G 1 = 0

}
= min

{
yTLGy

yTDGy

∣∣∣∣ y 6= 0, yTDG1 = 0

}
.

The latter equality is obtained by setting x = D
1/2
G y.

The following lemma allows us to rewrite the Rayleigh quotient yTLGy
yTDGy

in a useful form,

when yTDG1 = 0.

Lemma 4.1. For any vector y we have

yTDGy ≥
1

2d(V )

∑
u6=v

d(u)d(v)(y(u)− y(v))2,

with equality if and only if yTDG1 = 0.

Proof.

1

2

∑
u6=v

d(u)d(v)(y(u)− y(v))2 =
1

2

∑
u6=v

d(u)d(v)[y(u)2 + y(v)2]−
∑
u6=v

d(u)d(v)y(u)y(v)

=
∑
u6=v

d(u)d(v)y(u)2 −
∑
u6=v

d(u)d(v)y(u)y(v)

=
∑
u,v

d(u)d(v)y(u)2 −
∑
u,v

d(u)d(v)y(u)y(v)

= d(V )
∑
u

d(u)y(u)2 −

(∑
u

d(u)y(u)

)2

= d(V )yTDGy −
(
yTDG1

)2
.
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A corollary of the lemma is the formula

ν2(G) = inf

{
d(V )

∑
(u,v)∈E(G)w(u, v)(y(u)− y(v))2∑
u<v d(u)d(v)(y(u)− y(v))2

∣∣∣∣∣ denominator is nonzero

}
, (3)

where the summation over u < v in the denominator is meant to indicate that each unordered
pair {u, v} of distinct vertices contributes exactly one term to the sum. The corollary is
obtained by noticing that the numerator and denominator on the right side are invariant
under adding a scalar multiple of 1 to y, and hence one of the vectors attaining the infimum
is orthogonal to DG1.

Let us evaluate the quotient on the right side of (3) when y is the characteristic vector
of a cut (S, S), defined by

y(u) =

{
1 if u ∈ S
0 if u ∈ S.

In that case, ∑
(u,v)∈E(G)

w(u, v)(y(u)− y(v))2 =
∑

(u,v)∈∂S

w(u, v) = w(∂S)

while ∑
u<v

d(u)d(v)(y(u)− y(v))2 =
∑
u∈S

∑
v∈S

d(u)d(v) = d(S)d(S).

Hence,

ν2(G) ≤ d(V )
w(∂S)

d(S)d(S)
,

and taking the minimum over all (S, S) we obtain

ν2(G) ≤ φ(G).

5 Cheeger’s Inequality: Upper Bound on Conductance

The inequality ν2(G) ≤ φ(G) is the easy half of Cheeger’s Inequality; the more difficult half
asserts that there is also an upper bound on φ(G) of the form

φ(G) ≤
√

8ν2(G).

Owing to the inequality φ(G) ≤ 2h(G), it suffices to prove that

h(G) ≤
√

2ν2(G)

and that is, in fact, the next thing we will prove.
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For any vector y that is not a scalar multiple of 1, define

Q(y) = d(V )

∑
(u,v)∈E(G)w(u, v)(y(u)− y(v))2∑
u<v d(u)d(v)(y(u)− y(v))2

.

Given any such y, we will find a cut (S, S) such that w(∂S)

min{d(S),d(S)} ≤
√

2Q(y); the upper

bound h(G) ≤
√

2ν2(G) follows immediately by choosing y to be a vector minimizing Q(y).
In fact, if we number the vertices of G as v1, v2, . . . , vn such that y1 ≤ y2 ≤ · · · ≤ yn, we will
show that it suffices to take S to be one of the sets {y1, . . . , yk} for 1 ≤ k < n.

Note that Q(y) is unchanged when we add a scalar multiple of 1 to y. Accordingly, we
can assume without loss of generality that∑

yi<0

d(vi) ≤
∑
yi≥0

d(vi)∑
yi≤0

d(vi) ≥
∑
yi>0

d(vi)

For d-regular graphs, this essentially means that we’re setting the median of the components
of y to be zero. For irregular graphs, it essentially says that we’re balancing the total degree
of the vertices with positive y(u) and those with negative y(u).

Now here comes the most unmotivated part of the proof. Define a vector z by

zi =

{
−y2i if yi < 0

y2i if yi ≥ 0.

Note also that Q(y) is unchanged when we multiply y by a nonzero scalar. Accordingly, we
can assume that zn − z1 = 1. Now choose a threshold value t uniformly at random from the
interval [z1, zn] and let

S = {vi | zi < t}.

We will prove that
E[w(∂S)]

E[min{d(S), d(S)}]
≤
√

2Q(y)

from which it follows that

E[w(∂S)] ≤
√

2Q(y) · E[min{d(S), d(S)}]

and consequently that there is at least one S in the support of our distribution such that

w(∂S) ≤
√

2Q(y) ·min{d(S), d(S)}.

It is surprisingly easy to evaluate E[min{d(S), d(S)}]. Each vertex vi contributes d(vi)
to the expression inside the expectation operator when it belongs to the smaller side of the
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cut, which happens if and only if t lands between 0 and zi, an event with probability |zi|.
Consequently,

E[min{d(S), d(S)}] =
∑
u

d(u)|z(u)| =
∑
u

d(u)y(u)2 = yTDGy.

Meanwhile, to bound the numerator E[w(∂S)], observe that an edge (u, v) contributes
w(u, v) to the numerator if and only if it is cut, an event having probability |z(u)− z(v)|. A
bit of case analysis reveals that

∀u, v |z(u)− z(v)| ≤ |y(u)− y(v)| · (|y(u)|+ |y(v)|),

since the left and right sides are equal when y(u), y(v) have the same sign, and otherwise
the left side equals y(u)2 + y(v)2 while the right side equals (|y(u)| + |y(v)|)2. Combining
this estimate of the numerator with Cauchy-Schwartz, we find that

E[w(∂S)] ≤
∑

(u,v)∈E(G)

w(u, v)|y(u)− y(v)|(|y(u)|+ |y(v)|)

≤

 ∑
(u,v)∈E(G)

w(u, v)(y(u)− y(v))2

1/2 ∑
(u,v)∈E(G)

w(u, v)(|y(u)|+ |y(v)|)2
1/2

≤

(
Q(y)

d(V )

∑
u<v

d(u)d(v)(y(u)− y(v))2

)1/2
 ∑

(u,v)∈E(G)

w(u, v)(2y(u)2 + 2y(v)2)

1/2

≤
(
Q(y)yTDGy

)1/2(
2
∑
u

d(u)y(u)2

)1/2

= (2Q(y))1/2yTDGy.

6 Laplacian eigenvalues and spectral partitioning

We’ve seen a connection between sparse cuts and eigenvectors of the normalized Laplacian
matrix. However, in some contexts it is easier to work with eigenvalues and eigenvectors of
the unnormalized Laplacian, LG. One can use eigenvectors of LG for spectral partitioning,
provided one is willing to tolerate weaker bounds for graphs with unbalanced degree se-
quences. For example, if y is an eigenvector of LG satisfying LGy = λ2y then we can express
Q(y) as follows:

Q(y) = d(V )
yTLGy∑

u<v d(u)d(v)(y(u)− y(v))2
=

λ2‖y‖2d(V )∑
u<v d(u)d(v)(y(u)− y(v))2

.
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To estimate the denominator, let dmin and davg denote the minimum and the average degree
of G, respectively. We have∑

u<v

d(u)d(v)(y(u)− y(v))2 =
1

2

∑
u6=v

d(u)d(v)(y(u)− y(v))2

≥ 1

2
d2min

∑
u6=v

(y(u)− y(v))2

= nd2min

∑
u

y(u)2 =
d(V )

davg
d2min‖y‖2.

Hence

Q(y) ≤ davg
d(V )

λ2‖y‖2d(V )

d2min‖y‖2
=

(
davg
d2min

)
λ2.

7 Spectral sparsification of graphs

For a dense graph G with n vertices and m � n edges, it is often desirable to compute a
sparse approximation H, i.e. an edge-weighted graph with the same vertex set but with O(n)
or O(n log n) edges, such that

(1− ε)LG � LH � (1 + ε)LG. (4)

Such a graph is called a spectral sparsification of G. It is useful because it preserves some of
the essential features of G. For example, we have seen that for any vertex set S, if x denotes
the vector

xu =

{
1 if u ∈ S
0 if u 6∈ S

then the capacity of the cut (S, S), with edge set ∂S, is given by

c(∂S) = xTLGx.

In light of equation (4) we know that a spectral sparsifier H satisfies

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

hence a spectral sparsifier preserves the capacity of every cut in G, up to a factor of 1± ε.
Random sampling furnishes a simple method for computing a spectral sparsifier of G. We

will be designing and analyzing an algorithm that samples edges e1, . . . , ek independently,
each drawn from a probability distribution that will be denoted by {π(e) | e ∈ E}. Designing
an appropriate sampling distribution will be the subtlest part of the algorithm, and we will
defer discussion of how to choose π for now. The number of sampled edges, k, will turn out
to be O(n log n), but for now we’ll also leave k as a parameter of the algorithm whose precise
value will be specified later.
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For any edge e = (u, v) let δe denote the vector whose components are defined by

(δe)w =


−1 if w = u

1 if w = v

0 otherwise.

The vector δe is only well-defined up to sign. In other words, the undirected edge e = (u, v) is
equally well represented as e = (v, u), but these two representations lead to the vectors δe and
−δe, respectively. The sign ambiguity will not matter, because we won’t be dealing directly
with the vector δe but instead with the rank-one matrix δeδ

T
e . The equation (−δe) (−δTe ) =

δeδ
T
e assures that we get the same matrix no matter which choice we make for δe.
Recall that the Laplacian of a graph G with edge capacities c(e) is given by the weighted

sum
LG =

∑
e∈E

c(e)δeδ
T
e . (5)

Similarly, for our random graph H, if we choose a “rescaled capacity” for each edge e, and set
the capacity of e in H to ĉ(e) times the number of times e occurs in the multi-set {e1, . . . , ek}
of randomly sampled edges, then the Laplacian of H will be given by

LH =
k∑
i=1

ĉ(ei)δeiδ
T
ei

(6)

and its expected value will be

E[LH ] = k ·
∑
e∈E

π(e)ĉ(e)δeδ
T
e .

To equate E[LH ] with LG the simplest thing to do is to equate the coefficient of δeδ
T
e for each

edge e, which necessitates setting

kĉ(e)π(e) = c(e)

ĉ(e) = c(e)
kπ(e)

.

Thus, the capacities ĉ(e) of the sampled edges will be uniquely determined by the number
of sampled edges, k, and the sampling distribution, π.

To analyze the quality of the spectral approximation achieved by the sampling algo-
rithm, we need to estimate the extent to which the random matrix LH may differ from
its expectation, E[LH ]. Since LH is a sum of independent, identically distributed random
matrices—namely, the summands on the right side of (6)—it is natural to use a version of
the Chernoff Bound adapted to summing matrices rather than scalars. There are several
exponential tail bounds for sums of random matrices; an excellent survey on the subject is
“An Introduction to Matrix Concentration Inequalities” by Joel Tropp. The exponential tail
bound we will use here is the Ahlswede-Winter Inequality.
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Theorem 7.1 (Ahlswede-Winter Inequality). Suppose X1, X2, . . . , Xk are mutually indepen-

dent random, symmetric, positive semidefinite n × n matrices, and let U = E
[
1
k

∑k
i=1Xi

]
.

If R ≥ 1 is a scalar such that for all i, Xi � R · U with probability 1, then for all ε ∈ (0, 1),

Pr

[
(1− ε)U � 1

k

k∑
i=1

Xi � (1 + ε)U

]
≥ 1− 2n · exp

(
− ε2k

4R

)
. (7)

We will only sketch the proof here. The proof is similar to the proof of the Chernoff
bound. Letting X denote the random sum

∑k
i=1Xi, the standard proof of the Chernoff

bound uses the exponential generating function Φ(t) = E[etX ]. Here, the expression etX is
matrix-valued. To make Φ scalar-valued we instead use Φ(t) = E[tr(etX)]. This accounts for
the extra factor of n in the failure probability on the right side of (14). (The trace of the
identity matrix is n, not 1.) The main difficulty that arises in the proof of Ahlswede-Winter,
relative to the proof of Chernoff, is that the exponentials of non-commuting matrices do
not commute, so the identity etX =

∏n
i=1 e

tXi does not hold. However, a matrix inequality
known as the Golden-Thompson Inequality justifies that

tr(etX) ≤ tr

(
n∏
i=1

etXi

)
which is good enough to complete the proof.

Returning to the analysis of spectral graph sparsification, recall the random graph Lapla-
cian LH in equation (6). The average of the k summands on the right side has expected
value 1

k
E[LH ] = 1

k
LG. Thus, to apply the Ahlswede-Winter Inequality, we need to find a

constant R ≥ 1 such that for each edge e,

ĉ(e)δeδ
T � R ·

(
1
k
LG
)

c(e)δeδ
T
e � Rπ(e) · LG. (8)

The Ahlswede-Winter Inequality will then ensure that with probability at least 1−2n exp(− ε2k
4R

),
we have (1 − ε)LG � LH � (1 + ε)LG, as desired. If we want this event to happen with
probability at least 1

2
, we set k = 4Rε−2 ln(4n). Thus, the number of edges we need to

sample when constructing H is linearly related to the constant R appearing on the right
side of (8), and designing a good graph sparsification algorithms boils down to constructing
a distribution {π(e)} that allows R to be as small as possible.

As a näıve first attempt, we could take π to be the uniform distribution, π(e) = 1
m

for all
e. Then, noting that the formula (5) justifies the relation c(e)δeδ

T
e � LG for all e, we see that

we just need to make R large enough that Rπ(e) ≥ 1 for all e. Since we are using π(e) = 1
m

this means setting R = m. Our näıve idea of setting π to be the uniform distribution has
not worked out well: instead of sparsifying G, we have increasing the number of edges from
m to k = 4mε−2 ln(4n).

One might hope that the uniform sampling technique performs better than the above
analysis would suggest. After all, our analysis made use of the relation c(e)δeδ

T
e � LG,
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which typically has a large amount of “slack” because LG is a sum of m positive semidefinite
matrices, only one of which is c(e)δeδ

T
e . However, on closer inspection, the whose idea of

uniform edge sampling is doomed to require sampling Ω(m) edges in the worst case. To see
why, consider the case that G is made up of two cliques K0, K1, each of size n/2, joined by a
single edge, e. Let x denote the vector defined by setting xu = 1 if u ∈ K0, xu = 0 if u ∈ K1.
If we fail to sample edge e when constructing the sparsifier, H, then xTLHx = 0 whereas
xTLGx > 0, which rules out the possibility that H is a spectral sparsifier of G. Thus, if we
sample o(m) edges from the uniform distribution, with probability 1 − o(1) we will fail to
obtain a spectral sparsifier. Our only hope is to use a non-uniform distribution over edges
that assigns higher probability to edges, such as the edge e in the foregoing example, that
are “spectrally irreplaceable”, meaning that they must be included in any spectral sparsifier
of G.

Since our goal is to minimize R, a more principled way of designing the distribution π
consists of solving the following semidefinite program whose variables are R and {π(e) | e ∈
E}.

minimize R

subject to c(e)δeδ
T
e � Rπ(e) · LG ∀e ∈ E∑

e∈E π(e) = 1

π(e) ≥ 0 ∀e ∈ E

(9)

The first constraint can be rewritten as

∀e = (u, v) ∈ ER ≥ c(e)

π(e)
·max

{
(δTe x)2

xTLGx

∣∣∣∣x 6= 0

}
(10)

and it will be helpful to solve the maximization problem on the right side. Since δe is

orthogonal to the nullspace of LG, the quotient c(e)(δTe x)
2

π(e)xTLGx
is unchanged if we add any vector in

the nullspace of LG to x. For this reason, among the set of vectors x that attain the maximum
on the right side of (10) there is one that is orthogonal to the nullspace of LG and we may
assume henceforth that x is such a vector. In particular, this means L+

GLGx = LGL
+
Gx = x.

Let y = L
1/2
G x and . Then

(δTe x)2

xTLGx
=

(δTe (L+
G)1/2y)2

yTy
.

For any vector w, the maximum of (wTy)2

yTy
over nonzero vectors y is attained when y is a unit

vector in the direction of w, in which case (wTy)2

yTy
= wTw. Substituting w = (L+

G)1/2δe we find
that

max

{
(δTe x)2

xTLGx

∣∣∣∣x 6= 0

}
=
(
(L+

G)1/2δe
)T

(L+
G)1/2δe = δTe L

+
Gδe.

Substituting this into (10) and multiplying both sides by π(e) we find that

Rπ(e) ≥ c(e)δTe L
+
Gδe.
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Summing over e,

R = R

(∑
e

π(e)

)
≥
∑
e

c(e)δTe L
+
Gδe (11)

= tr

(∑
e

c(e)δeδ
TL+

G

)
(12)

= tr
(
LGL

+
G

)
= n− c, (13)

where c denotes the number of connected components of G, and the last inequality follows
from the fact that LGL

+
G is the projection on Rn onto the nullspace of LG.

Our objective of minimizing R will be served if we make the inequality in line (11) tight,
which means setting R = n − c and π(e) = 1

n−cc(e)δ
T
e L

+
Gδe for each edge. This choice of R

and {π(e)} is the optimal solution of the semidefinite program (9) and leads to a spectral
sparsifier H with k < 4nε−2 ln(4n) edges.

Incidentally, the quantity c(e)δTe L
+
Gδe is called the effective resistance of edge e. It can

be interpreted as the resistance between the endpoints of edge e, if one were to build an
electrical network in the shape of the graph G, with each edge e′ represented by a resistor
of resistance c(e′). This connection between electrical networks and graph sparsification is
just one of many beautiful connections between electrical networks, spectral graph theory,
graph algorithms, and random walks. For more on this topic, see Doyle and Snell’s short
book, “Random Walks and Electric Networks”.

A Additional tools for working with symmetric matri-

ces

This appendix contains some additional tools that are useful in the design and analysis of
algorithms involving symmetric matrices.

A.1 Standard matrix functions

There is a standard way of extending any function that maps R to R into a function mapping
Symn(R) to Symn(R). In this section we define these “standard matrices functions” and
present some basic examples and properties.

Definition A.1. If f : R → R is any function, the matrix extension of f is the unique
function from Symn(R) to Symn(R) satisfying f(diag(λ1, . . . , λn)) = diag(f(λ1), . . . , f(λn))
and f(QDQ−1) = Qf(D)Q−1 for every orthogonal matrix Q and diagonal matrix D.

The only subtlety in the definition of the matrix extension of f is that any given A ∈
Symn(R) can be written as QDQ−1 in more than one way, and one needs to verify that the
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definition of f(A) does not depend on the choice of representation A = QDQ−1. We leave
this verification to the reader.

Some immediate consequences of the definition are the following.

1. If A ∈ Symn(R) has eigenvalues λ1, . . . , λn and corresponding eigenvectors x1, . . . , xn,
then f(A) has eigenvalues f(λ1), . . . , f(λn) and corresponding eigenvectors x1, . . . , xn.

2. If A is symmetric and Q is orthogonal, then f(QAQ−1) = Qf(A)Q−1.

3. If f and g are two functions from R to R and f ◦g, f+g, f ·g are the functions defined
by

(f ◦ g)(λ) = f(g(λ)), (f + g)(λ) = f(λ) + g(λ), (f · g)(λ) = f(λ) g(λ)

then for all a ∈ Symn(R),

(f ◦ g)(A) = f(g(A)), (f + g)(A) = f(A) + g(A), (f · g)(A) = f(A) g(A).

The following are some useful properties and examples.

1. For any two functions f, g and any matrix A ∈ Symn(R), the matrices f(A) and g(A)
commute with one another. This is due to the identity f · g = g · f .

2. If f is a polynomial function f(λ) =
∑m

i=0 ciλ
i, then f(A) =

∑n
i=0 ciA

i, where A0 is
interpreted as the identity matrix.

3. If f is represented by a power series f(λ) =
∑∞

i=0 ciλ
i that converges on the open

interval (−R,R), then f(A) =
∑∞

i=0 ciA
i for every matrix A whose eigenvalues are all

contained in the interval (−R,R).

4. An important special case of the preceding example is the matrix exponential function,
defined by

eA =
∞∑
i=0

1

i!
Ai.

5. If f is the function

f(λ) =

{
λ−1 if λ 6= 0

0 if λ = 0

then f(A) is denoted by A+ and is called the Moore-Pensore pseudoinverse (or, simply,
pseudoinverse) of A. When A is invertible, A+ is the inverse of A. More generally,
A+A = AA+ is the matrix that represents the orthogonal projection of Rn onto the
column space of A.
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A.2 The Golden-Thompson Inequality

Theorem A.2 (Golden-Thompson Inequality). For any matrices A,B ∈ Symn(R),

tr
(
eAeB

)
≥ tr

(
eA+B

)
.

A.3 The PSD ordering on symmetric matrices

Let Symn(R) denote the vector space of n-by-n symmetric matrices over R. If A − B is
positive semidefinite we write A � B or B � A. This relation is a partial order: it is
reflexive (the zero matrix is PSD), antisymmetric (if a matrix and its negation are PSD, it
is the zero matrix), and transitive (the sum of two PSD matrices is PSD).

A.4 The Ahlswede-Winter Inequality

The Ahlswede-Winter Inequality is a counterpart of the Chernoff bound, for sums of inde-
pendent random symmetric PSD matrices rather than sums of independent random scalars.

Theorem A.3 (Ahlswede-Winter Inequality). Suppose X1, X2, . . . , Xk are mutually inde-

pendent random, symmetric, positive semidefinite n×n matrices, and let U = E
[
1
k

∑k
i=1Xi

]
.

If R ≥ 1 is a scalar such that for all i, Xi � R · U with probability 1, then for all ε ∈ (0, 1),

Pr

[
(1− ε)U � 1

k

k∑
i=1

Xi � (1 + ε)U

]
≥ 1− 2n · exp

(
− ε2k

4R

)
. (14)

The proof is similar to the proof of the Chernoff bound. LettingX denote the random sum∑k
i=1Xi, the standard proof of the Chernoff bound uses the exponential generating function

Φ(t) = E[etX ]. Here, the expression etX is matrix-valued. To make Φ scalar-valued we instead
use Φ(t) = E[tr(etX)]. This accounts for the extra factor of n in the failure probability on
the right side of (14). (The trace of the identity matrix is n, not 1.) The main difficulty
that arises in the proof of Ahlswede-Winter, relative to the proof of Chernoff, is that the
exponentials of non-commuting matrices do not commute, so the identity etX =

∏n
i=1 e

tXi

does not hold. However, the Golden-Thompson Inequality justifies the inequality

tr(etX) ≤ tr

(
n∏
i=1

etXi

)

which is good enough to complete the proof.

Proof. The proof begins by reducing to the case where U is the identity matrix. Since U is
symmetric positive semidefinite, it can be written as QDQ−1, where Q is orthogonal and D
is a diagonal matrix with non-negative entries arranging in non-increasing order. Replacing
each Xi with QXiQ

−1, we can assume henceforth that U = D. If the nullspace of D has
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dimension d > 0, then the entries in the final d rows and columns of D are all equal to
zero. The relation Xi � R · D implies that any vector in the nullspace of D must also
belong to the nullspace of Xi for each i. Thus, for each i, the entries in the final d rows
and columns of Xi are all equal to zero. To prove a lower bound on the probability of the
event (1 − ε)D � 1

k

∑k
i=1Xi � (1 + ε)D, it suffices to confine our attention to the square

submatrices occupying the first n− d rows and columns of each matrix involved.
Having thus reduced to the case that U is a non-singular diagonal matrix D, we may

replace each Xi with D−1/2XiD
−1/2 to finally reduce to the case when E[ 1

k

∑k
i=1Xi] is the

identity matrix, 1.
Now let X = 1

k

∑k
i=1Xi and consider the function

Φ(t) = E
[
tr
(
etX
)]
.
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