
Cornell University, Fall 2024 CS 6820: Algorithms
Lecture notes: Matchings 26 Aug – 11 Sep 2023

These notes analyze algorithms for optimization problems involving matchings in graphs.
Matching algorithms are not only useful in their own right (e.g., for matching clients to servers
in a network, or buyers to sellers in a market) but also furnish a concrete starting point for
learning many of the recurring themes in the theory of graph algorithms and algorithms in
general. Examples of such themes are augmenting paths, linear programming relaxations,
and primal-dual algorithm design.

1 Bipartite maximum matching

In this section we introduce the bipartite maximum matching problem, present a näıve
algorithm with O(mn) running time, and then present and analyze an algorithm due to
Hopcroft and Karp that improves the running time to O(m

√
n).

1.1 Definitions

Definition 1. A bipartite graph is a graph whose vertex set is partitioned into two disjoint
sets L,R such that each edge has one endpoint in L and the other endpoint in R. When we
write a bipartite graph G as an ordered triple G = (L,R,E), it means that L and R are the
two vertex sets (called the left set and right set, respectively) and E is the edge set.

Definition 2. A matching in an undirected graph is a set of edges such that no vertex
belongs to more than element of the set.

The bipartite maximum matching problem is the problem of computing a matching of
maximum cardinality in a bipartite graph.

We will assume that the input to the bipartite maximum matching problem, G =
(L,R,E), is given in its adjacency list representation, and that the bipartition of G—that
is, the partition of the vertex set into L and R—is given as part of the input to the problem.

Exercise 1. Prove that if the bipartition is not given as part of the input, it can be con-
structed from the adjacency list representation of G in linear time.

(Here and elsewhere in the lecture notes for CS 6820, we will present exercises that may
improve your understanding. You are encouraged to attempt to solve these exercises, but
they are not homework problems and we will make no effort to check if you have solved
them, much less grade your solutions.)

1.2 Alternating paths and cycles; augmenting paths

The following sequence of definitions builds up to the notion of an augmenting path, which
plays a central role in the design of algorithms for the bipartite maximum matching problem.

1

Definition 3. If G is a graph and M is a matching in G, a vertex is called matched if it
belongs to one of the edges in M , and free otherwise.

An alternating component with respect to M (also called an M-alternating component)
is an edge set that forms a connected subgraph of G of maximum degree 2 (i.e., a path or
cycle), in which every degree-2 vertex belongs to exactly one edge of M . An augmenting path
with respect to M is an M -alternating component which is a path both of whose endpoints
are free vertices.

In the following lemma, and throughout these notes, we use the notation A⊕B to denote
the symmetric difference of two sets A and B, i.e. the set of all elements that belong to one
of the sets but not the other.

Lemma 1. If M is a matching and P is an augmenting path with respect to M , then M ⊕P
is a matching containing one more edge than M .

Proof. P has an odd number of edges, and its edges alternate between belonging to M and
its complement, starting and ending with the latter. Therefore, M ⊕ P has one more edge
than M . To see that it is a matching, note that vertices in the complement of P have the
same set of neighbors in M as in M ⊕ P , and vertices in P have exactly one neighbor in
M ⊕ P .

Lemma 2. A matching M in a graph G is a maximum cardinality matching if and only if
it has no augmenting path.

Proof. We have seen in Lemma 1 that if M has an augmenting path, then it does not have
maximum cardinality, so we need only prove the converse. Suppose that M∗ is a matching
of maximum cardinality and that |M | < |M∗|. The edge set M ⊕M∗ has maximum degree
2, and each vertex of degree 2 in M ⊕M∗ belongs to exactly one edge of M . Therefore
each connected component of M ⊕M∗ is an M -alternating component. At least one such
component must contain more edges of M∗ than of M . It cannot be an alternating cycle
or an even-length alternating path; these have an equal number of edges of M∗ and M . It
also cannot be an odd-length alternating path that starts and ends in M . Therefore it must
be an odd-length alternating path that starts and ends in M∗. Since both endpoints of this
path are free with respect to M , it is an M -augmenting path as desired.

1.3 Bipartite maximum matching: Näıve algorithm

The foregoing discussion suggests the following general scheme for designing a bipartite
maximum matching algorithm.

Algorithm 1 Näıve iterative scheme for computing a maximum matching

1: Initialize M = ∅.
2: repeat
3: Find an augmenting path P with respect to M .
4: M ←M ⊕ P
5: until there is no augmenting with respect to M .

2

By Lemma 1, the invariant that M is a matching is preserved at the end of each loop
iteration. Furthermore, each loop iteration increases the cardinality of M by 1, and the
cardinality cannot exceed n/2, where n is the number of vertices of G. Therefore, the
algorithm terminates after at most n/2 iterations. When it terminates, M is guaranteed to
be a maximum matching by Lemma 2.

The algorithm is not yet fully specified because we have not indicated the procedure for
finding an augmenting path with respect to M . When G is a bipartite graph, there is a
simple linear-time procedure that we now describe.

Definition 4. If G = (L,R,E) is a bipartite graph and M is a matching, the graph GM is
the directed graph formed from G by orienting each edge from L to R if it does not belong
to M , and from R to L otherwise.

Lemma 3. Suppose M is a matching in a bipartite graph G, and let F denote the set of
free vertices. M-augmenting paths are in one-to-one correspondence with directed paths from
L ∩ F to R ∩ F in GM .

Proof. If P is a directed path from L ∩ F to R ∩ F in GM then P starts and ends at free
vertices, and its edges alternate between those that are directed from L to R (which are in
the complement of M) and those that are directed from R to L (which are in M), so the
undirected edge set corresponding to P is an augmenting path.

Conversely, if P is an augmenting path, then each vertex in the interior of P belongs to
exactly one edge of M , so when we orient the edges of P as in GM each vertex in the interior
of P has exactly one incoming and one outgoing edge, i.e. P becomes a directed path. This
path has an odd number of edges so it has one endpoint in L and the other endpoint in
R. Both of these endpoints belong to F , by the definition of augmenting paths. Thus, the
directed edge set corresponding to P is a path in GM from L ∩ F to R ∩ F .

Lemma 3 implies that in each loop iteration of Algorithm 1, the step that requires finding
an augmenting path (if one exists) can be implemented by building the auxiliary graph GM

and running a graph search algorithm such as BFS or DFS to search for a path from L ∩ F
to R ∩ F . Building GM takes O(m+ n) time, where m is the number of edges in G, as does
searching GM using BFS or DFS. For convenience, assume m ≥ n/2; otherwise G contains
isolated vertices which may be eliminated in a preprocessing step requiring only O(n) time.
Then Algorithm 1 runs for at most n/2 iterations, each requiring O(m) time, so its running
time is O(mn).

Remark 1. When G is not bipartite, our analysis of Algorithm 1 still proves that it finds a
maximum matching after at most n/2 iterations. However, the task of finding an augmenting
path, if one exists, is much more subtle. The first polynomial-time algorithm for finding an
augmenting path was discovered by Jack Edmonds in a 1965 paper entitled “Paths, Trees,
and Flowers” that is one of the most influential papers in the history of combinatorial
optimization. Edmonds’ algorithm finds an augmenting path in O(mn) time, leading to a
running time of O(mn2) for finding a maximum matching in a non-bipartite graph. Faster
algorithms have subsequently been discovered.

3

1.4 The Hopcroft-Karp algorithm

One potentially wasteful aspect of the näıve algorithm for bipartite maximum matching is
that it chooses one augmenting path in each iteration, even if it finds many augmenting paths
in the process of searching the auxiliary graph GM . The Hopcroft-Karp algorithm improves
the running time of the näıve algorithm by correcting this wasteful aspect; in each iteration
it attempts to find many disjoint augmenting paths, and it uses all of them to increase the
size of M .

In this section we will adopt the notations of the previous section: G = (L,R,E) is a
bipartite graph, M is a matching, F is the set of free vertices with respect to M , and GM is
the directed graph constructed from G and M by orienting edges of M from R to L and all
other edges of G from L to R. We will refer to this directed graph henceforth as the residual
graph of M in G.

When one performs breadth-first search starting from the vertex set L ∩ F in GM , the
search algorithm discovers, for each vertex v ∈ L∪R, the length of the shortest directed path
in GM from L ∩ F to v. Denote this shortest path length by d(v). (If there is no directed
path in GM from L ∩ F to v, then d(v) =∞.)

Edges of GM can be divided into two types: if e = (u, v) satisfies d(v) > d(u) we call
e an advancing edge, otherwise we call it a retreating edge. Note that an advancing edge
(u, v) must satisfy d(v) = d(u) + 1; the relation d(v) > d(u) + 1 is not possible because the
shortest path from L∩ F to v cannot be strictly longer than the path formed by appending
edge (u, v) to the end of a shortest path from L ∩ F to u.

We are now ready to define the type of structure that the Hopcroft-Karp algorithm
searches for in each of its iterations.

Definition 5. If G is a graph and M is a matching, a blocking set of augmenting paths with
respect to M is a maximal set of vertex-disjoint advancing M -augmenting paths.

In the definition, the term “advancing M -augmenting path” means an M -augmenting
path composed entirely of edges that are advancing in GM . It is important that we define a
blocking set to be a maximal set of such paths (meaning that the blocking set is not a proper
subset of any other collection of vertex-disjoint advancing M -augmenting paths) rather than
a maximum set of vertex-disjoint advancing M -augmenting paths (which would mean that
there is no other collection of vertex-disjoint advancing M -augmenting paths containing
strictly more paths than the blocking set). Weakening the definition from “maximum” to
“maximal” allows us to design a linear-time algorithm to find a blocking set of augmenting
paths with respect to any matching M , as we now explain.

1.4.1 Computing a blocking set of augmenting paths

The algorithm to compute a blocking set of augmenting paths consists of two phases: a
breadth-first search of GM to locate the set of advancing edges, and then a depth-first
search on the graph H formed by the advancing edges. As advancing augmenting paths are
discovered during the depth-first search they are placed into a set, B, which is a blocking
set when the algorithm terminates.

4

Algorithm 2 Computing a blocking set of augmenting paths

1: Given: bipartite graph G = (L,R,E), matching M
2: Form the set of free vertices, F , and the residual graph, GM .
3: Perform breadth-first search in GM starting from L ∩ F to find the advancing edges.
4: Initialize graph H with V (H) = L ∪R and E(H) = {advancing edges in GM}.
5: Initialize empty augmenting path set, B.
6: Initialize S to be an empty stack.
7: while L ∩ F ∩ V (H) is non-empty do
8: if S is empty then
9: Push any element of L ∩ F ∩ V (H) onto S.
10: else
11: Let u be the vertex on top of S.
12: if u ∈ R ∩ F then
13: Let P be the path formed by the vertices of S, ordered from bottom to top.
14: Insert P into blocking set B.
15: Delete the vertices of P and all of their incident edges from H.
16: Reinitialize S to be an empty stack.
17: else if E(H) contains an edge (u, v) leaving u then
18: Push v on top of S.
19: else
20: Delete u and all of its incident edges from H.
21: Pop u from S.
22: end if
23: end if
24: end while
25: Output B.

Before proving the correctness of the algorithm, let’s analyze its running time. Con-
structing GM , performing breadth-first search on it, and constructing H, all take linear
time, O(m + n). Assuming as before that G has no isolated vertices, so that n ≤ 2m, we
can write this running time bound as O(m). To bound the running time of the while loop
in Algorithm 2, we make the following observations.

1. As the while-loop runs, it sometimes deletes vertices and edges from H. Once deleted,
these vertices and edges are never re-inserted. Therefore, the total running time de-
voted to deleting them is O(m+ n) = O(m). Henceforward, we will ignore time spent
deleting vertices and edges.

2. In a while-loop iteration that inserts a new path into B, the running time (ignoring
time spent deleting edges) is proportional to the length of the path. The paths in B are
all vertex-disjoint, so their combined length is at most n, hence the combined running
time of these loop iterations is O(n).

3. Every other while-loop iteration either pushes a vertex onto the stack or pops it from
the top of the stack. Ignoring the edge deletions that occur when a vertex is popped,

5

these while-loop iterations have constant running time. The number of such iterations
is O(n) because each vertex is popped from the stack at most once, hence it is also
pushed into the stack at most once.

Summing up all the components of the running time accounted above, the total running
time of the blocking set computation is O(m) as claimed.

The correctness of the algorithm is proven inductively. The inductive hypothesis is the
conjunction of three assertions that hold at the start and end of each iteration of the main
loop.

1. The contents of the stack S constitute a path in H starting from L ∩ F .

2. The contents of the set B constitute vertex-disjoint advancing M -augmenting paths.

3. If P is a path in GM composed of advancing edges and ending at a vertex in R ∩ F ,
then either P is contained in H or P has a vertex in common with one of the paths in
B.

At the start of the main loop, S and B are empty and H contains all of the advancing
edges in GM , so all three properties hold at that time. The first property is always satisfied
because the algorithm only pushes elements of L ∩ F to the bottom of an empty stack,
and it only pushes a vertex v onto a non-empty stack when H contains an edge from the
vertex at the top of the stack into v. To verify that the second property is a loop invariant,
observe that the paths in B must be vertex-disjoint because whenever a path is added to
B its vertices are immediately and permanently deleted from H, so no path containing any
of those vertices will later be added to B. Furthermore, a path is only added to B when it
starts in L ∩ F , ends in R ∩ F , and is composed of edges of H. All the edges of of H are
advancing edges in GM , so the paths that are added to B are advancing paths in GM , i.e.
advancing M -augmenting paths. Finally, to see that the third property is a loop invariant,
consider the loop iteration in which P ceases to be contained in H. Edges of H are only
deleted when one of their endpoints is deleted, so when P ceases to be contained in H one
of its vertices must be deleted. If this vertex belongs to a path being inserted into B, then
the third invariant is preserved. The only other case in which the algorithm deletes a vertex
from H is when the vertex is at the top of the stack, does not belong to R ∩ F , and has
no outgoing edges remaining in H. However, the final vertex of P belongs to R ∩ F and
all other vertices of P have at least one outgoing edge remaining in H (recall that we are
considering the last moment at which P is contained in H). Hence, this case cannot apply
to P , so we have verified that the third invariant is preserved by each loop iteration.

From the second and third invariants, it is clear that the output of the algorithm is a
blocking set of M -augmenting paths. The second invariant guarantees that the contents
of B are a set of vertex-disjoint advancing M -augmenting paths, and the third invariant
guarantees that this set is maximal because if there is another advancing M -augmenting
path disjoint from those in B, then that path must be contained in H. In particular, the
first vertex of the path must belong to L ∩ F ∩ V (H), so the while loop would not have
terminated.

6

1.4.2 The Hopcroft-Karp Algorithm and its Analysis

As indicated earlier, the Hopcroft-Karp Algorithm improves the näıve algorithm for bipartite
maximum matching, by augmenting an entire blocking set of augmenting paths in each
iteration instead of using just one augmenting path. The correctness of the algorithm follows,
as before, from the fact that its termination condition guarantees that it outputs a matching
that has no augmenting paths, and every such matching has maximum cardinality.

Algorithm 3 Hopcroft-Karp algorithm, outer loop

1: M = ∅
2: repeat
3: Let {P1, . . . , Pk} be a blocking set of augmenting paths with respect to M .
4: M ←M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk
5: until there is no augmenting path with respect to M

We have seen in Section 1.4.1 that each loop iteration takes O(m) time, so the analysis
of the running time boils down to proving an upper bound on the number of blocking-set
computations the algorithm must perform. To prove the upper bound we will make use of
two different measures of progress: the number of edges in the matching, and the length of
the shortest M -augmenting path. In the following series of lemmas we will show that both
of these parameters strictly increase in each iteration of the Hopcroft-Karp Algorithm.

The following lemma generalizes Lemma 1 and its proof is a direct generalization of the
proof of that lemma.

Lemma 4. If M is a matching and {P1, . . . , Pk} is any set of vertex-disjoint M-augmenting
paths then M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk is a matching of cardinality |M |+ k.

Generalizing Lemma 2 we have the following.

Lemma 5. Suppose G is a graph, M is a matching in G, and M∗ is a maximum matching;
let k = |M∗| − |M |. The edge set M ⊕M∗ contains at least k vertex-disjoint M-augmenting
paths. Consequently, G has at least one M-augmenting path of length less than n/k, where
n denotes the number of vertices of G.

Proof. The edge set M⊕M∗ has maximum degree 2, and each vertex of degree 2 in M⊕M∗

belongs to exactly one edge of M . Therefore each connected component of M ⊕M∗ is an
M -alternating component. Each M -alternating component which is not an augmenting path
has at least as many edges in M as in M∗. Each M -augmenting path has exactly one fewer
edge in M as in M∗. Therefore, at least k of the connected components of M ⊕M∗ must
be M -augmenting paths, and they are all vertex-disjoint. To prove the final sentence of the
lemma, note that G has only n vertices, so it cannot have k disjoint subgraphs each with
more than n/k vertices.

Lemma 4 guarantees that the cardinality of the matching M strictly increases with each
iteration of the Hopcroft-Karp Algorithm. Below, in Lemma 6 we establish the validity of

7

the other progress measure, namely the length of the shortest M -augmenting path. Finally,
in Lemma 7 we combine the two progress measures to prove an upper bound on the total
number of blocking set computations.

Lemma 6. The minimum length of an M-augmenting path strictly increases after each
iteration of the Hopcroft-Karp outer loop in which a non-empty blocking set of augmenting
paths is found.

Proof. We will use the following notation.

M = matching at the start of one loop iteration

P1, . . . , Pk = blocking set of augmenting paths found

Q = P1 ∪ · · · ∪ Pk
Q = E \Q
M ′ = M ⊕Q = matching at the end of the iteration

F = {vertices that are free with respect to M}
F ′ = {vertices that are free with respect to M ′}

d(v) = length of shortest path in GM from L ∩ F to v

(If no such path exists, d(v) =∞.)

In the edge set of GM ′ , the orientation of every edge in Q is reversed and the orientation
of every edge in Q is preserved. Therefore, GM ′ has three types of directed edges (x, y):

1. reversed edges of Q, which satisfy d(y) = d(x)− 1;
2. advancing edges of Q, which satisfy d(y) = d(x) + 1;
3. retreating edges of Q, with satisfy d(y) ≤ d(x).

Note that in all three cases, the inequality d(y) ≤ d(x) + 1 is satisfied.

Now let ` denote the minimum length of an augmenting path with respect to M , i.e.
` = min{d(v) | v ∈ R ∩ F}. Let P be any path in GM ′ from L ∩ F ′ to R ∩ F ′. The lemma
asserts that P has strictly more than ` edges. The endpoints of P are free in M ′, hence also
in M . As w ranges over the vertices of P , the value d(w) increases from 0 to at least `, and
each edge of P increases the value of d(w) by at most 1. Therefore P has at least ` edges, and
the only way that it can have ` edges is if d(y) = d(x) + 1 for each edge (x, y) of P . Above,
when we enumerated the three types of edges in GM ′ , we saw that the only type satisfying
d(y) = d(x) + 1 are the advancing edges of Q, so if the path P has length ` then it must be
made up entirely of advancing edges in Q. In particular this implies P is edge-disjoint from
Q. The path P cannot be vertex-disjoint from Q because then {P1, . . . , Pk, P} would be a
set of k + 1 vertex-disjoint minimum-length M -augmenting paths, violating our assumption
that {P1, . . . , Pk} is a blocking set. Therefore P has at least one vertex in common with
P1, . . . , Pk, i.e. P ∩ Q 6= ∅. The endpoints of P cannot belong to Q, because they are free
in M ′ whereas every vertex in Q is matched in M ′. Let w be a vertex in the interior of P
which belongs to Q. Since Q is the set of augmenting paths that was used to transform M
into M ′, every vertex of Q belongs to an edge of Q ∩M ′. Let e be the edge in Q ∩M ′ that
contains w. Edge e must belong to P because any M ′-augmenting path must contain the

8

edges of M ′ incident to all of its interior nodes. Hence, we have established that e belongs
to the edge sets of both P and Q. This violates our earlier conclusion that P is edge-disjoint
from Q, yielding the desired contradiction.

Lemma 7. The Hopcroft-Karp algorithm terminates after fewer than 2
√
n iterations of its

outer loop.

Proof. After the first
√
n iterations of the outer loop are complete, the minimum length of

an M -augmenting path is greater than
√
n. This implies, by Lemma 5, that |M∗| − |M | <√

n, where M∗ denotes a maximum cardinality matching. Each remaining iteration strictly
increases |M |, hence there are fewer than

√
n iterations remaining.

Since each iteration of the Hopcroft-Karp algorithm takes time O(m), and there are fewer
than 2

√
n iterations, the total running time is bounded above by O(m

√
n).

2 Non-bipartite matching

When the graph G is not bipartite, Lemma 2 is still valid: a matching has maximum cardi-
nality if and only if it has no augmenting path. Hence, as before, the problem of finding a
maximum matching reduces to the problem of finding an augmenting path with respect to a
given matching, or else certifying that there is none. However, whereas in the bipartite case
the problem of finding an augmenting path reduced to searching for a path in the directed
graph GM , in the non-bipartite case there is no correspondingly simple reduction.

To see why, it’s useful to consider what goes wrong with the näıve idea of searching for
an augmenting path using “breadth-first search over the set of alternating paths”. Here’s
one way of making this information idea precise. For a graph G and matching M , define
H(G,M) to be a directed graph with the same set of vertices as G, and with a directed edge
(u, v) for every pair of vertices such that G contains a path made up of two edges (u, u′) and
(u′, v) such that (u, u′) 6∈ M and (u′, v) ∈ M . Note that if G contains an M -augmenting
path made up of 2k + 1 edges, then the first 2k of those edges correspond to a k-edge path
in H(G,M) that starts in F , the set of free vertices, and ends in Γ(F), the set of vertices
that are adjacent to a free vertex.

If the converse were true, i.e. if finding a path in H(G,M) from F to Γ(F) were equivalent
to finding an M -augmenting path in G, then we could design a maximum non-bipartite
matching algorithm along exactly the same lines as in the bipartite case. Instead, there is a
second alternative represented by the diagram in Figure 1: a simple path in H(G,M) from
F to Γ(F) might correspond to a non-simple alternating walk from F to N(F) in G, i.e. an
alternating walk that repeats some vertices.

Definition 6. If G is a graph and M is a matching in G, a flower with respect to M is an
M -alternating walk u0, u1, . . . , us such that:

1. u0 is a free vertex with respect to M ;

2. the vertices u0, . . . , us−1 are distinct, whereas us = ur for some number r < s

9

3. r is even and s is odd.

The stem of the flower is the path u0, u1, . . . , ur. (Note that it is possible that r = 0, in
which case the stem is an empty path.) The blossom of the flower is the cycle ur, . . . , us.

u0 u1 u2 u3 u4

u5 u6

u7u8

Figure 1: A flower

Lemma 8. If the graph H(G,M) contains a path P from F to Γ(F), then G contains either
an M-augmenting path or a flower.

Proof. Suppose that P = v0, v1, . . . , vk is a simple path in H(G,M) from F to Γ(F). For
i = 1, 2, . . . , k, the edge (vi−1, vi) in H(G,M) corresponds to a sequence of two edges in
G, the first lying outside M and the second belonging to M . Denote these two edges by
(u2i−2, u2i−1) 6∈ M and (u2i−1, u2i) ∈ M . Since vk = u2k belongs to Γ(F), we may choose a
free vertex u2k+1 adjacent to u2k. Now consider the alternating walk u0, u1, . . . , u2k+1 in G.
If all of its vertices are distinct, then it is an M -augmenting path. Otherwise, let us be the
earliest instance of a repeated vertex in the alternating walk, and let ur denote the earlier
occurrence of this same vertex.

If s is even, then the edge (us−1, us) belongs to M . Note that this means s is not a
free vertex, so r > 0. This means that either (ur−1, ur) or (ur, ur+1) belongs to M , hence
us−1 is equal to either ur−1 or ur+1. This contradicts our choice of s unless r + 1 = s − 1,
which is impossible because the case (ur, ur+1) ∈M only occurs when r is odd, in which case
r + 1 6= s− 1 because the left side is even and the right side is odd. Hence, the assumption
that s is even leads to a contradiction.

If s and r are both odd, then (ur, ur+1) ∈M so us is not a free vertex. In particular this
means that s < 2k + 1. The edge (us, us+1) belongs to M , which implies that us+1 = ur+1.
However, since s + 1 and r + 1 are even, the vertices us+1 and ur+1 both belong to P ,
contradicting the assumption that P is a simple path.

By process of elimination, we have deduced that s is odd and r is even, in which case the
sequence u0, . . . , us constitutes a flower.

If G contains a flower with blossom B, our algorithm for finding an M -augmenting path
in G will depend on an operation called blossom shrinking which forms a new graph G/B
with matching M/B, as follows. The vertices of B are replaced with a single vertex {vb}.
Edges having both endpoints in B are removed. For those having exactly one endpoint in
B, that endpoint is changed to vb and the other endpoint is preserved. Edges having no
endpoints in B are unchanged. Note that this operation may produce a multigraph (i.e.,

10

there may be multiple edges between the same two vertices) in the case that there is a
vertex having more than one neighbor in B. In the event that G/B contains multiple edges
between the same two vertices, we can discard all but one of those edges without affecting
the algorithm’s correctness; however, in our analysis we prefer to treat G/B as a multigraph
because it means that every edge of G/B has one unambiguous corresponding edge in G,
which simplifies the analysis.

Let M/B denote the set of edges in G/B whose corresponding edge in G belongs to M .
Note that M/B is a matching: for all vertices other than vb it is clear that they belong to
at most one edge in M/B, while for vb this holds because if ur, ur+1, . . . , us denotes the list
of vertices in B, in the order that they occur in the flower, then ur (also known as us) is the
only vertex in the blossom that potentially belongs to an edge of M whose other endpoint
lies outside of M .

u0 u1 u2

u3

u4 v

w

u0 u1 vb

v

w

Figure 2: Shrinking a blossom

The following lemma on the relationship between augmenting paths in G and those in
G/B accounts for the importance of the blossom shrinking operation.

Lemma 9. If G is a graph, M is a matching, and B is the blossom of a flower with respect
to M , then G/B contains an (M/B)-augmenting path if and only if G contains an M-
augmenting path. Furthermore, any (M/B)-augmenting path in G/B can be modified into
an M-augmenting path in G in time |B|.

Proof. Denote the vertices of the flower containing B by u0, . . . , us, numbered as in Defi-
nition 6. If P is an (M/B)-augmenting path in G/B and P does not contain vb, then it
is already an M -augmenting path in G. Otherwise, P contains an edge (w, vb) that does
not belong to M/B. Let (w, ut) be the corresponding edge of G, where r ≤ t < s. An M -
augmenting path in G can be constructed by replacing edge (w, vb) with an M -alternating
path from w to ur in G whose first and last edges do not belong to M . If t is even,
then replace edge (w, ut) with path w, ut, ut−1, . . . , ur; if t is odd, then replace (w, ut) with
w, ut, ut+1, . . . , us. Notice that the path segment that replaces (w, ut) has fewer than |B|
edges, and the replacement can be done in O(|B|) time if we use suitable data structures,
e.g. representing the path P as a doubly linked list of edges. This justifies the running time
bound in the last sentence of the lemma statement.

It remains for us to prove that if G contains an M -augmenting path, then G/B contains
an (M/B)-augmenting path. One might expect this to be a simple matter of reversing the
operation defined in the preceding paragraph, but in fact it’s a little trickier. To see why,

11

consider the augmenting path 〈v, u4, u3, w〉 in Figure 2. The corresponding path in G/B is
〈v, vb, w〉 which is not an alternating path with respect to M/B.

Instead, we first let S = {(ui−1, ui) | i = 1, . . . , r} denote the set of edges belonging to the
stem of the flower, and we modify M to M ′ = M ⊕S. Note that |M ′| = |M | and ur, ur+1, us
is a flower with respect to M ′ (having an empty stem). Hence, B is still a blossom with
respect to M ′, and M ′/B is still a matching in G/B, with the same number of edges as
M/B. We will now apply the following chain of reasoning to deduce the existence of an
(M/B)-augmenting path in G/B.

G has an M -augmenting path⇒M is not a maximum matching in G (Lemma 2)

⇒M ′ is not a maximum matching in G (|M | = |M ′|)
⇒ G has an M ′-augmenting path (Lemma 2)

⇒ G/B has an (M ′/B)-augmenting path (proven below)

⇒M ′/B is not a maximum matching in G/B (Lemma 2)

⇒M/B is not a maximum matching in G/B (|M/B| = |M ′/B|)
⇒ G/B has an (M/B)-augmenting path (Lemma 2)

The only step that remains to be justified is that the existence of an M ′-augmenting path
in G implies the existence of an (M ′/B)-augmenting path in G/B. Suppose that P is an
M ′-augmenting path in G. If P does not intersect B then it is already an augmenting path
in G/B. Otherwise, since B contains only one free vertex (namely ur), we know that at
least one endpoint of P does not belong to B. Number the vertices of P as v0, v1, . . . , vt with
v0 6∈ B, and suppose that vk is the lowest-numbered vertex of P that belongs to B. Then
the path 〈v0, v1, . . . , vk−1, vb〉 is an (M ′/B)-augmenting path in G/B, as desired.

Lemma 9 inspires the following algorithm for solving the maximum perfect matching
problem in non-bipartite graphs.

12

Algorithm 4 Edmonds’ non-bipartite matching algorithm

1: Initialize M = ∅.
2: repeat
3: P = Search(G,M) // Return augmenting path, or empty set if none exists.
4: M ←M ⊕ P
5: until P = ∅

6: procedure Search(G,M)
7: Build the graph H(G,M).
8: Search for a path P̂ from F to Γ(F) in H(G,M).
9: if no path found then
10: Return P = ∅
11: end if
12: Post-process P̂ , as in the proof of Lemma 8, to extract an augmenting path or flower.
13: if augmenting path P is found then
14: Return P
15: else
16: Let B be the blossom of the flower.
17: Let P ′ = Search(G/B,M/B)
18: if P ′ = ∅ then
19: Return P = ∅
20: else
21: Transform P ′ to an M -augmenting path P as in the proof of Lemma 9.
22: end if
23: end if
24: end procedure

The algorithm’s outer loop (Lines 2 and 5) iterates at most n/2 times. In each iteration,
we make a sequence of recursive calls to the Search procedure, which searches for an
augmenting path. Each recursive call involves shrinking a blossom, which reduces the number
of vertices in the graph by at least 2. Hence, we call Search at most n/2 times within each
iteration of the outer loop. To assess the amount of work done in each call to Search
(excluding work done in recursive sub-calls to the same procedure) we start by observing
that the graph H(G,M) has n vertices and at most 2m edges, since the number of outgoing
edges from a vertex in H(G,M) is bounded above by the degree of that vertex in G. Hence,
building and searching the graph H(G,M) takes O(m) time. (Assuming, as always, that G
has no isolated vertices so that n = O(m).) The remaining steps of Search also take O(m)
steps, if not fewer, as can be seen by reviewing the proofs of Lemma 8 and Lemma 9. Hence,
the overall running time of Edmonds’ algorithm is bounded above by O(mn2).

13

3 Bipartite min-cost perfect matching

In the bipartite minimum-cost perfect matching problem, we are given an undirected bipar-
tite graph G = (L,R,E) as before, together with a (non-negative, real-valued) cost ce for
each edge e ∈ E. Assume |L| = |R|. Let c(u, v) = ce if e = (u, v) is an edge of G, and
c(u, v) = ∞ otherwise. From now on, we will consider G to be a complete bipartite graph,
with some edges having infinite cost. As always, let n denote the number of vertices and m
the number of finite-cost edges of G.

When S is a set of edges we will write c(S) to denote
∑

e∈S ce. The bipartite min-cost
perfect matching problem is to find a perfect matching M that minimizes c(M).

3.1 Iterative min-cost augmenting paths

Noting the success of augmenting-path methods at solving the maximum-cardinality bipar-
tite matching problem, it is logical to expect that they have a role to play in solving the
minimum-cost perfect matching problem as well. To begin with, we seek to understand how
augmenting paths affect the cost of a matching.

Lemma 10. If M is a matching and S is an edge set such that M ⊕ S is also a matching,
then

c(M ⊕ S) = c(M) + c(S \M)− c(S ∩M) (1)

Proof. The lemma follows immediately from the set-theoretic relation

M ⊕ S = (M \ (S ∩M)) ∪ (S \M)

and the observation that the two sets on the right side are disjoint.

In light of Lemma 10 we define the incremental cost of S relative to M as follows:

∆c(S;M) = c(S \M)− c(S ∩M). (2)

The following greedy algorithm starts with an empty matching and iteratively transforms it
into a perfect matching using the augmenting path of least incremental cost.

Algorithm 5 Greedy algorithm for minimium cost bipartite perfect matching.

1: Initialize M = ∅.
2: while M is not a perfect matching do
3: Find an M -augmenting path P that minimizes ∆c(P ;M).
4: M ←M ⊕ P
5: end while
6: Output M .

Proving the correctness of this algorithm is surprisingly tricky. The proof is by induction
on the number of loop iterations; the induction hypothesis is that the matching produced
after k iterations has the minimum cost among all matchings of size k. The base case k = 0
is obvious, and the induction step is encapsulated in the following lemma.

14

Lemma 11. If Mk is a minimum-cost matching of size k in G, and P is an Mk-augmenting
path of minimum incremental cost, then Mk ⊕ P is a minimum-cost matching of size k + 1.

Proof. Let Mk+1 denote a minimum-cost matching of size k+1. The inequality c(Mk⊕P) ≥
c(Mk+1) is obvious because Mk⊕P is a matching of size k+1. In the remainder of the proof
we focus on proving the reverse inequality.

The symmetric difference Mk ⊕Mk+1 is made up of connected components, at least one
of which is an Mk-augmenting path. Denote this path by Q and let R be the union of the
remaining connected components of Mk ⊕ Mk+1. Note that R contains an equal number
of edges in Mk and in Mk+1 (because it total, the number of Mk+1 edges in the symmetric
difference Mk⊕Mk+1 exceeds the number of Mk edges by 1, and the path Q already accounts
for this excess) and that every component of R is alternating with respect to both Mk and
Mk+1. Therefore R ⊕Mk is a k-edge matching and R ⊕Mk+1 is a (k + 1)-edge matching.
Since Mk and Mk+1 are minimum-cost matchings for their respective cardinalities,

c(Mk) ≤ c(R⊕Mk) = c(Mk) + ∆c(R;Mk)

c(Mk+1) ≤ c(R⊕Mk+1) = c(Mk+1) + ∆c(R;Mk+1).

Therefore, ∆c(R;Mk) and ∆c(R;Mk+1) are both non-negative. On the other hand, they
sum to zero because

∆c(R;Mk) + ∆c(R;Mk+1) = [c(R ∩Mk+1)− c(R ∩Mk)] + [c(R ∩Mk)− c(R ∩Mk+1] = 0.

Hence, ∆c(R;Mk) and ∆c(R;Mk+1) are both equal to zero.

Recalling that P is an Mk-augmenting path of minimum incremental cost, we have the
inequality ∆c(P ;Mk) ≤ ∆c(Q;Mk). Combining this with the equation ∆c(R;Mk) = 0, we
find that

c(Mk ⊕ P) = c(Mk) + ∆c(P ;Mk)

≤ c(Mk) + ∆c(Q;Mk)

= c(Mk) + ∆c(Q;Mk) + ∆(R;Mk)

= c(Mk) + ∆c(Q ∪R;Mk)

= c(Mk ⊕ (Q ∪R))

= c(Mk+1)

which confirms that Mk ⊕ P is a minimum cost matching of size k + 1.

To implement Algorithm 5, we need to specify how to compute the M -augmenting path P
that minimizes ∆c(P ;M). Recall thatM -augmenting paths are in one-to-one correspondence
with paths from L ∩ F to R ∩ F in the directed graph GM . Assign costs to the edges of
GM by specifying that directed edge (u, v) has cost c(u, v) if (u, v) 6∈ M and (v, u) has cost
−c(u, v) if (u, v) ∈M . According to this cost assignment, the cost of a path P in GM is equal
to ∆c(P ;M), so we have reduced the problem of finding an augmenting path of minimum
incremental cost to computing a minimum-cost path in GM from L ∩ F to R ∩ F . Since
GM has a mixture of positive and negative edge costs, the appropriate algorithm for finding

15

a minimum-cost path is the Bellman-Ford algorithm. In order for Bellman-Ford to succeed
in solving the minimum-cost path problem, we require that GM has no negative-cost cycles.
Fortunately, we can prove that there are no negative-cost cycles in GM . Indeed, if C is a
cycle in GM then C is an M -alternating cycle, hence M ⊕ C is a matching with the same
cardinality as M . By the induction hypothesis,

c(M) ≤ c(M ⊕ C) = c(M) + ∆c(C;M)

which verifies that ∆c(C;M) ≥ 0, i.e. the cost of cycle C is GM is non-negative.

The running time of the Bellman-Ford algorithm is O(mn), and Algorithm 5 requires n/2
iterations of its outer loop, with a call to Bellman-Ford in each iteration. Hence, the total
running time is O(mn2). Next, we will present a modified implementation that improves the
running time by finding a way to use Dijkstra’s algorithm instead of Bellman-Ford.

To be able to use Dijkstra’s algorithm, we need to modify the edge costs in GM so that
they become non-negative, yet searching for a minimum-cost path from L ∩ F to R ∩ F is
still equivalent to searching for a minimum-incremental-cost M -augmenting path. The key
idea will be to place values yu on the vertices of GM and redefine the edge costs to equal the
following “reduced costs”:{

cy(u, v) = c(u, v)− yu − yv if (u, v) 6∈M
cy(v, u) = yu + yv − c(u, v) if (u, v) ∈M.

(3)

To explain when this modification of the edge costs is effective, we introduce the following
definition.

Definition 7. Let G be a bipartite graph with edge costs, and let M be a matching in
G. An assignment of values yu to the vertices of G is called M-compatible if it satisfies the
following properties.

1. yu + yv ≤ c(u, v) for all edges (u, v).

2. yu + yv = c(u, v) for all (u, v) ∈M .

3. yu = maxw∈L{yw} for all u ∈ L ∩ F .

4. yv = maxw∈R{yw} for all v ∈ R ∩ F .

One useful property of this definition is that if there exists an M -compatible labeling y,
then it furnishes a very succinct proof that M has the minimum cost among all matchings
of its cardinality.

Lemma 12. If G is a bipartite graph, M is a matching in G, and y is an M-compatible
labeling of vertices, then M has the minimum cost among all matchings with the same number
of edges as M .

16

Proof. Let M ′ be another matching with the same number of edges as M . Let W (M) and
W (M ′) denote the set of vertices that are matched in M and M ′, respectively. Then

c(M) =
∑

(u,v)∈M

c(u, v) =
∑

(u,v)∈M

yu + yv =
∑

w∈W (M)

yw

c(M ′) =
∑

(u,v)∈M ′
c(u, v) ≥

∑
(u,v)∈M

yu + yv =
∑

w∈W (M ′)

yw

c(M ′)− c(M) =
∑

w∈W (M ′)

yw −
∑

w∈W (M)

yw.

If k denotes the number of edges in M , then the vertex sets W (M) and W (M ′) both contain
k vertices on each side of the graph. Any vertex that belongs to W (M ′) but not W (M)
is free in M . The M -compatibility condition ensures that yu ≥ yu′ whenever u is free in
M and u′ belongs to the same side of the graph. Hence,

∑
w∈W (M ′) yw ≥

∑
w∈W (M) yw and

c(M ′)− c(M) ≥ 0.

The main algorithmic use of M -compatible labelings is that, as advertised, they allow
us to use modified edge costs to more rapidly find an M -augmenting path of minimum
incremental cost.

Lemma 13. Suppose M is a matching and y is M-compatible. Then cy(e) ≥ 0 for each
edge e in GM , and the M-augmenting paths P of minimum incremental cost are precisely
those that minimize cy(P).

Proof. The relation cy(e) ≥ 0 follows from the definition of cy and from properties 1 and 2
of a compatible labeling. If P is an M -augmenting path from s ∈ L ∩ F to t ∈ R ∩ F then

cy(P) =
∑

(u,v)∈P\M

cy(u, v) +
∑

(u,v)∈P∩M

cy(v, u)

=
∑

(u,v)∈P\M

c(u, v)− yu − yv +
∑

(u,v)∈P∩M

yu + yv − c(u, v)

= ∆c(P ;M)− (ys + yt) (4)

The second line follows from the definition of cy. The third line follows because the yu terms
corresponding to internal vertices of P cancel: each such vertex belongs to exactly one edge
of P \M and one edge of P ∩M . The fourth line follows from property 3 of a compatible
labeling.

To conclude the proof of the lemma, observe that property 4 of a compatible labeling
ensures that the value ys + yt subtracted on the right side of (4) does not depend on the
identity of the vertices s and t, only on the fact that s ∈ L ∩ F and t ∈ R ∩ F .

With Lemma 13 in hand, the strategy for modifying Algorithm 5 becomes clear: we need
to compute a matching M and a vertex labeling y in each iteration, while maintaining the
property that y is M -compatible. Then, the search for the M -augmenting path of minimum
incremental cost can be carried out using Dijkstra’s algorithm on the graph GM with edge

17

Algorithm 6 Improved algorithm for minimium cost bipartite perfect matching.

1: Initialize M = ∅.
2: Initialize yu = 0 for all u ∈ V .
3: while M is not a perfect matching do
4: Construct the graph GM and compute reduced costs cy.
5: Run Dijkstra’s algorithm to compute, for every w ∈ V (GM), the minimum-reduced-

cost path from L ∩ F to w. Denote the reduced cost of this path by dw. If there is no
path from L ∩ F to w in GM , let dw =∞.

6: Let P be a minimum-reduced-cost path from L ∩ F to R ∩ F .
7: M ←M ⊕ P .
8: For all u ∈ L, yu ← yu + (cy(P)− du)+.
9: For all v ∈ R, yv ← yv − (cy(P)− dv)+.
10: end while
11: Output M .

costs defined by cy. The pseudocode for this search process is presented in Algorithm 6,
where we adopt the notation that x+ denotes max{x, 0} for any real number x.

Lemmas 12 and 13 already do most of the work of proving the correctness of this algo-
rithm. The only remaining step is to show that y in M -compatible in each iteration of the
algorithm.

Lemma 14. At the start of every iteration of Algorithm 6 the labeling y is M-compatible.

Proof. The proof is by induction on the number of iterations of the main loop. In the
base case when M = ∅ and yu = 0 for all u, property 1 of an M -compatible labeling is
satisfied because the edge costs are non-negative, and the remaining properties are trivially
satisfied. For the induction step, assume a loop iteration starts with matching M and with
M -compatible labeling y. Let M ′ = M ⊕P denote the new matching at the end of the loop
iteration, and let y′ denote the new labeling.

First, let us verify that c(u, v) ≥ y′u + y′v for all edges e = (u, v), with equality when
e ∈M ′.

Case 1: e ∈M . For e = (u, v) ∈M we have c(u, v) = yu + yv by the induction hypothesis.
The unique edge leading into vertex u in GM is (v, u) which satisfies cy(v, u) = 0.
Hence du = dv which implies y′u + y′v = yu + yv = c(u, v).

Case 2: e ∈ P \M . In this case the directed edge (u, v) in GM belongs to the shortest path
from L∩F to v. In fact the shortest such path is the initial segment of P ending with
edge (u, v). Hence

dv = du + cy(u, v) = du + c(u, v)− yu − yv

which can be rearranged to yield

(yu − du) + (yv + dv) = c(u, v).

18

Furthermore, the quantities cy(P)−du and cy(P)−dv are non-negative, because cy(P)−
du (respectively, cy(P) − dv) is the sum of cy(e) over all edges e in the subpath of P
from u (respectively, v) to the right endpoint of P , and cy(e) ≥ 0 for all e. Hence,

y′u + y′v = yu + (cy(P)− du) + yv − (cy(P)− dv) = (yu − du) + (yv + dv) = c(u, v).

Case 3: e 6∈ P ∪M In this case the directed edge (u, v) belongs to E(GM) so

dv ≤ du + cy(u, v) (5)

cy(P)− du ≤ cy(P)− dv + cy(u, v) (6)

(cy(P)− du)+ ≤ (cy(P)− dv)+ + cy(u, v). (7)

The last line follows from the line above by case analysis. If cy(P)−du < 0 then the left
side of Inequality (7) is zero and the right side is clearly non-negative. If cy(P)−du ≥ 0
then the left sides of (6) and (7) are equal to one another, and the right side of (7) is
greater than or equal to the right side of (6). Now,

y′u + y′v = yu + (cy(P)− du)+ + yv − (cy(P)− dv)+

≤ yu + (cy(P)− dv)+ + cy(u, v) + yv − (cy(P)− dv)+

= yu + cy(u, v) + yv = c(u, v).

In all three cases we conclude that y′ satisfies property 1 of a compatible labeling. Since the
edges of M ′ all belong to either M or P \M , and we have seen that y′a + y′b = c(a, b) in both
of those cases, property 2 is also satisfied. Property 3 follows from the observation that for
u ∈ L, the difference y′u − yu = (cy(P) − du)+ is maximized when du = 0, which holds for
all u ∈ L∩ F. Finally, property 4 follows from the observation that for v ∈ R, the difference
y′v − yv = −(cy(P)− dv)+ is maximized when dv ≥ cy(P), which holds for all v ∈ R∩F .

3.2 LP relaxation

The aim of this section and the following one is to give the reader some insight into where
Algorithm 6 comes from and how it fits into broader themes in algorithm design. When one
first encounters Algorithm 6, at least two aspects may seem ad hoc and unmotivated: the
definition of an M -compatible labeling, and the update rules for yu and yv at the end of
each iteration of the while-loop. We will see that both of these features of the algorithm
can be interpreted as stemming from the systematic analysis of a linear programming (LP)
relaxation of the min-cost bipartite matching problem.

A perfect matching M can be described by a matrix (xuv) of 0’s and 1’s, where xuv = 1 if
and only if (u, v) ∈M . The sum of the entries in each row and column of this matrix equals
1, since each vertex belongs to exactly one element of M . Conversely, for any matrix with
{0, 1}-valued entries, if each row sum and column sum is equal to 1, then the corresponding
set of edges is a perfect matching. Thus, the bipartite minimum-cost matching problem can
be expressed as follows.

min
∑

u,v c(u, v)xuy
s.t.

∑
v xuv = 1 ∀u∑
u xuv = 1 ∀v

xuv ∈ {0, 1} ∀u, v

19

This is a discrete optimization problem because of the constraint that xuv ∈ {0, 1}. Although
we already know how to solve this discrete optimization problem in polynomial time, many
other such problems are not known to have any polynomial-time solution. It’s often both
interesting and useful to consider what happens when we relax the constraint xuv ∈ {0, 1} to
xuv ≥ 0, allowing the variables to take any non-negative real value. This turns the problem
into a continuous optimization problem, in fact a linear program.

min
∑

u,v c(u, v)xuv
s.t.

∑
v xuv = 1 ∀u∑
u xuv = 1 ∀v

xuv ≥ 0 ∀u, v

How should we think about a matrix of values xuv satisfying the constraints of this linear
program? We’ve seen that if the values are integers, then it represents a perfect matching.
A general solution of this constraint set can be regarded as a fractional perfect matching.
What does a fractional perfect matching look like? An example is illustrated in Figure 3.
Is it possible that this fractional perfect matching achieves a lower cost than any perfect

2/3

1/3 1/3

1/6

1/2

1/2

1/2

1/6

1/6

1/6

1/2

1/2 1/2

1/3 1/3

1/3

= + +

Figure 3: A fractional perfect matching.

matching? No, because it can be expressed as a convex combination of perfect matchings
(again, see Figure 3) and consequently its cost is the weighted average of the costs of those
perfect matchings. In particular, at least one of those perfect matchings costs no more than
the fractional perfect matching illustrated on the left side of the figure. This state of affairs is
not a coincidence. The Birkhoff-von Neumann Theorem asserts that every fractional perfect
matching can be decomposed as a convex combination of perfect matchings. (Despite the
eminence of its namesakes, the theorem is actually quite easy to prove. You should try
finding a proof yourself, if you’ve never seen one.)

Now suppose we have an instance of bipartite minimum-cost perfect matching, and we
want to prove a lower bound on the optimum: we want to prove that every fractional perfect
matching has to cost at least a certain amount. How might we prove this? One way is to
run a minimum-cost perfect matching algorithm, look at its output, and declare this to be
a lower bound on the cost of any fractional perfect matching. (There exist polynomial-time
algorithms for minimum-cost perfect matching, as we will see later in this lecture.) By
the Birkhoff-von Neumann Theorem, this produces a valid lower bound, but it’s not very
satisfying. There’s another, much more direct, way to prove lower bounds on the cost of

20

every fractional perfect matching, by directly combining constraints of the linear program.
To illustrate this, consider the graph with edge costs as shown in Figure 4. Clearly, the

u1

u2

v1
1

3

v2

3

4

Figure 4: An instance of bipartite minimum cost perfect matching.

minimum cost perfect matching has cost 5. To prove that no fractional perfect matching
can cost less than 5, we combine some constraints of the linear program as follows.

2x11 + 2x21 = 2

−x11 − x12 = −1

4x12 + 4x22 = 4

Adding these constraints, we find that

x11 + 3x12 + 2x21 + 4x22 = 5 (8)

x11 + 3x12 + 3x21 + 4x22 ≥ 5 (9)

Inequality (9) is derived from (8) because the only change we made on the left side was to
increase the coefficient of x21 from 2 to 3, and we know that x21 ≥ 0. The left side of (9)
is the cost of the fractional perfect matching ~m. We may conclude that the cost of every
fractional perfect matching is at least 5.

What’s the most general form of this technique? For every vertex w ∈ L ∪R, the linear
program contains a “degree constraint” asserting that the degree of w in the fractional perfect
matching is equal to 1. For each degree constraint, we multiply its left and right sides by
some coefficient to obtain ∑

v

yuxuv = yu

for some u ∈ L, or ∑
u

yvxuv = yv

for some v ∈ R. Then we sum all of these equations, obtaining∑
(u,v)∈L×R

(yu + yv)xuv =
∑
u∈L

yu +
∑
v∈R

yv. (10)

If the inequality yu + yv ≤ c(u, v) holds for every (u, v) ∈ L×R, then in the final step of the
proof we (possibly) increase some of the coefficients on the left side of (10) to obtain∑

u,v

c(u, v)xuv ≥
∑
u∈L

yu +
∑
v∈R

yv,

21

thus obtaining a lower bound on the cost of every fractional perfect matching. This technique
works whenever the coefficients (yw)w∈L∪R satisfy yu + yv ≤ c(u, v) for every edge (u, v),
regardless of whether the values yu, yv are positive or negative. To obtain the strongest
possible lower bound using this technique, we would set the coefficients yu, yv by solving the
following linear program.

max
∑

w∈L∪R yw
s.t. yu + yv ≤ c(u, v) ∀u, v

This linear program is called the dual of the min-cost-fractional-matching linear program.
We’ve seen that its optimum constitutes a lower bound on the optimum of the min-cost-
fractional-matching LP. For any linear program, one can follow the same train of thought
to develop a dual linear program. (There’s also a formal way of specifying the procedure; it
involves taking the transpose of the constraint matrix of the LP.) The dual of a minimization
problem is a maximization problem, and its optimum constitutes a lower bound on the
optimum of the minimization problem. This fact is called weak duality; as you’ve seen,
weak duality is nothing more than an assertion that we can obtain valid inequalities by
taking linear combinations of other valid inequalities, and that this sometimes allows us to
bound the value of an LP solution from above or below. But actually, the optimum value of
an LP is always exactly equal to the value of its dual LP! This fact is called strong duality
(or sometimes simply “duality”), it is far from obvious, and it has important ramifications
for algorithm design. In the special case of fractional perfect matching problems, strong
duality says that the simple proof technique exemplified above is actually powerful enough
to prove the best possible lower bound on the cost of fractional perfect matchings, for every
instance of the bipartite min-cost perfect matching problem.

It turns out that there is a polynomial-time algorithm to solve linear programs. As you
can imagine, this fact also has extremely important ramifications for algorithm design, but
that’s the topic of another lecture.

3.3 Primal-dual algorithm

In this section we will construct a fast algorithm for the bipartite minimum-cost perfect
matching algorithm, exploiting insights gained from the preceding section. The basic plan of
attack is as follows: we will design an algorithm that simultaneously computes two things:
a minimum-cost perfect matching, and a dual solution (vector of yu and yv values) whose
value (sum of yu’s and yv’s) equals the cost of the perfect matching. As the algorithm runs,
it maintains a dual solution ~y and a matching M , and it preserves the following invariants:

1. Every edge (u, v) satisfies yu + yv ≤ c(u, v). If yu + yv = c(u, v) we say that edge
e = (u, v) is tight.

2. The elements of M are a subset of the tight edges.

3. The cardinality of M increases by 1 in each phase of the algorithm, until it reaches n.

Assuming the algorithm can maintain these invariants until termination, its correctness will
follow automatically. This is because the matching M at termination time will be a perfect

22

matching satisfying ∑
(u,v)∈M

c(u, v) =
∑

(u,v)∈M

yu + yv =
∑

w∈L∪R

yw,

where the final equation holds because M is a perfect matching. The first invariant of the
algorithm implies that ~y is a feasible dual solution, hence the right side is a lower bound on
the cost of any fractional perfect matching. The left side is the cost of the perfect matching
M , hence M has the minimum cost of any fractional perfect matching.

So, how do we maintain the three invariants listed above while growing M to be a perfect
matching? We initialize M = ∅ and ~y = 0. Note that the three invariants are trivially
satisfied at initialization time. Now, as long as |M | < n, we want to find a way to either
increase the value of the dual solution or enlarge M without violating any of the invariants.
The easiest way to do this is to find an M -augmenting path P consisting of tight edges: in
that case, we can update M to M⊕P without violating any invariants, and we reach the end
of a phase. However, sometimes it’s not possible to find an M -augmenting path consisting
of tight edges: in that case, we must adjust some of the dual variables to make additional
edges tight.

The process of adjusting dual variables is best described as follows. The easiest thing
would be if we could find a vertex u ∈ L that doesn’t belong to any tight edges. Then we
could raise yu by some amount δ > 0 until an edge containing u became tight. However,
maybe every u ∈ L belongs to a tight edge. In that case, we need to raise yu by δ while
lowering some other yv by the same amount δ. This is best described in terms of a vertex
set T which will have the property that if one endpoint of an edge e ∈M belongs to T , then
both endpoints of e belong to T . Whenever T has this property, we can set

δ = min{c(u, v)− yu − yv |u ∈ L ∩ T, v ∈ R \ T} (11)

and adjust the dual variables by setting yu ← yu+ δ, yv ← yv− δ for all u ∈ L∩T, v ∈ R∩T.
This preserves the feasibility of our dual solution ~p, ~q (by the choice of δ) and it preserves
the tightness of each edge e ∈ M because every such edge has either both or neither of its
endpoints in T .

Let F be the set of free vertices, i.e. those that don’t belong to any element of M . T will
be constructed by a sort of breadth-first search along tight edges, starting from the set L∩F
of free vertices in L. We initialize T = L ∩ F . Since |M | < n, T is nonempty. Define δ as
in (11); if δ > 0 then adjust dual variables as explained above. Call this a dual adjustment
step. If δ = 0 then there is at least one tight edge e = (u, v) from L∩T to R\T . If v is a free
vertex, then we have discovered an augmenting path P consisting of tight edges (namely, P
consists of a path in T that starts at a free vertex in L, walks to u, then crosses edge e to
get to v) and we update M to M ⊕ P and finish the phase. Call this an augmentation step.
Finally, if v is not a free vertex then we identify an edge e = (u′, v) ∈ M and we add both
v and u′ to T and call this a T -growing step. Notice that the left endpoint of an edge of M
is always added to T at the same time as the right endpoint, which is why T never contains
one endpoint of an edge of M unless it contains both.

A phase can contain at most n T -growing steps and at most one augmentation step.
Also, there can never be two consecutive dual adjustment steps (since the value of δ drops

23

to zero after the first such step) so the total number of steps in a phase is O(n). Let’s figure
out the running time of one phase of the algorithm by breaking it down into its component
parts.

1. There is only one augmentation step and it costs O(n).

2. There are O(n) T -growing steps and each costs O(1).

3. There are O(n) dual adjustment steps and each costs O(n).

4. Finally, every step starts by computing the value δ using (11). Thus, the value of δ
needs to be computed O(n) times. Näıvely it costs O(m) work each time we need to
compute δ.

Thus, a näıve implementation of the primal-dual algorithm takes O(mn2).

However, we can do better using some clever book-keeping combined with efficient data
structures. For a vertex w ∈ T , let s(w) denote the number of the step in which w was
added to T . Let δs denote the value of δ in step s of the phase, and let ∆s denote the sum
δ1 + · · ·+ δs. Let yu,s, yv,s denote the values of the dual variables associated to vertices u, v
at the end of step s. Note that

yu,s =

{
yu,0 + ∆s −∆s(u) if u ∈ L ∩ T
yu,0 if u ∈ L \ T

(12)

yv,s =

{
yv,0 −∆s + ∆s(v) if v ∈ R ∩ T
yv,0 if v ∈ R \ T

(13)

Consequently, if e = (u, v) is any edge from L ∩ T to R \ T at the end of step s, then

c(u, v)− yu,s − yv,s = c(u, v)− yu,0 −∆s + ∆s(u) − yv,0

The only term on the right side that depends on s is −∆s, which is a global value that is
common to all edges. Thus, choosing the edge that minimizes c(u, v)−yu,s−yv,s is equivalent
to choosing the edge that minimizes c(u, v)− yu,0 + ∆s(u) − yv,0. Let us maintain a priority
queue containing all the edges from L ∩ T to R \ T . An edge e = (u, v) is inserted into this
priority queue at the time its left endpoint u is inserted into T . The value associated to e in
the priority queue is c(u, v) − yu,0 + ∆s(u) − yv,0, and this value never changes as the phase
proceeds. Whenever the algorithm needs to choose the edge that minimizes c(u, v)−yv,s−yu,s,
it simply extracts the minimum element of this priority queue, repeating as necessary until
it finds an edge whose right endpoint does not belong to T . The total amount of work
expended on maintaining the priority queue throughout a phase is O(m log n).

Finally, our gimmick with the priority queue eliminates the need to actually update the
values yu, yv during a dual adjustment step. These values are only needed for computing the
value of δs, and for updating the dual solution at the end of the phase. However, if we store
the values s(u), s(v) for all u, v as well as the values ∆s for all s, then one can compute any
specific value of yu,s or yv,s in constant time using (12)-(13). In particular, it takes O(n)

24

time to compute all the values yu, yv at the end of the phase, and it only takes O(1) time to
compute the value δs = c(u, v) − yu − yv once we have identified the edge e = (u, v) using
the priority queue. Thus, all the work to maintain the values yu, yv amounts to only O(n)
per phase.

In total, the amount of work in any phase is bounded by O(m log n) and consequently
the algorithm’s running time is O(mn log n).

4 Online matching

The study of online algorithms concerns problems in which information about the input is
revealed over a sequence of time steps t = 1, 2, . . . and the algorithm must make decisions
in each time step, without knowing what information will be revealed in future steps. In
the online bipartite matching problem, there is a bipartite graph G = (L,R,E) where L is
known as the offline side and R is the online side. The contents of the set L are known to
the algorithm at initialization time (t = 0), whereas the remaining information about G is
revealed at times t = 1, 2, . . . , n = |R|, by exposing one vertex of R at each time step. When
vertex j ∈ R arrives, all of its incident edges are revealed. The algorithm is then allowed
to take one of the following actions: select one of the edges (i, j) that was revealed in the
current step; or do nothing. The set of selected edges is required to be a matching; thus,
if vertex i ∈ L belongs to a previously selected edge, then (i, j) may not be selected in the
current time step. The algorithm’s objective is to maximize the number of edges selected.

A variation of this problem is the online bipartite fractional matching problem, in which
the input sequence is the same, but the algorithm’s output at time j is a tuple of numbers
(xij)i∈L satisfying:

• xij = 0 when (i, j) 6∈ E.

•
∑

i∈L xij ≤ 1.

• for all i ∈ L,
∑

j∈R xij ≤ 1.

In other words, the matrix of values (xij)(i,j)∈L×R eventually computed by the algorithm
must belong to the fractional matching polytope of G. Fractional matching is of interest as
a problem in its own right, and also as a window into the design of randomized online bipartite
matching algorithms. From any such randomized algorithm, one can define a corresponding
deterministic online fractional bipartite matching algorithm, obtained by setting xij to be
the unconditional probability that the online algorithm selects edge (i, j). (Note that this
unconditional probability can be computed at the time when vertex j arrives — i.e., it does
not depend on any information to be revealed in the future — which is the reason why the
fractional matching algorithm is a valid online algorithm.) Note that there is no obvious way
to invert this transformation; in other words, given a deterministic fractional online matching
algorithm, there is no obvious way to obtain a randomized online matching algorithm whose
expected behavior yields the designated fractional algorithm.

25

4.1 A lower bound

What should we hope to achieve in an online bipartite matching algorithm? If we are
unreasonably optimistic, we might hope to design an algorithm that is guaranteed to output a
maximum cardinality matching. The following example shows that this is hopeless. Suppose
L = {i1, i2} and R = {j1, j2}. Consider two possible input sequences. In both of them,
vertex j1 arrives at time t = 1 and reveals that it is connected to both i1 and i2. At time
t = 2, vertex j2 arrives and reveals that it has only one neighbor: in Input 1 this neighbor
is i1; in Input 2 it is i2.

Notice that the maximum matching has size 2 in both of these inputs: j2 can be matched
to its only neighbor, whereas j1 can be matched to the remaining element of L. Also notice
that in both cases, this is the unique matching of size 2. Therefore, an online algorithm that
seeks to select the maximum matching faces an insurmountable predicament: at time t = 1
it must match j1 to one of its neighbors, there is a unique choice that is consistent with
picking the maximum matching, and there is no way to know which choice this is until time
t = 2. Thus, for every deterministic online algorithm, we can find an input instance that
causes the algorithm to select a matching of size at most 1, while the maximum matching
has size 2.

One can place this impossibility result in the broader context of competitive analysis of
online algorithms, which evaluates algorithms according to the following criterion.

Definition 8. An online algorithm for a maximization problem is c-competitive if there
exists a constant b such that for all input sequences,

c · ALG + b ≥ OPT,

where ALG and OPT denote the values of the algorithm’s solution and the optimum one,
respectively. It is strictly c-competitive if b = 0 in the above bound. A randomized algorithm
is c-competitive (against an oblivious adversary) if the above holds with E[ALG] in place of
ALG.

Our analysis of the two four-vertex input sequences above implies that deterministic
online matching algorithms cannot be strictly c-competitive for any c < 2. By considering
inputs comprising an arbitrarily long sequence of disjoint copies of either Input 1 or Input
2, we can eliminate the word “strictly” and conclude that deterministic algorithms cannot
be c-competitive for any c < 2.

Our above discussion of the relationship between randomized and fractional algorithms
shows that a lower bound on the competitive ratio of deterministic fractional online algo-
rithms implies the same lower bound on the competitive ratio of randomized online algo-
rithms. In particular, the competitive ratio of fractional (and hence randomized) online
matching algorithms can be bounded below by 4/3, by an easy analysis of the same set of
input sequences that furnished the lower bound of 2 for deterministic algorithms.

26

4.2 The greedy algorithm

It turns out that the example presented in Section 4.1 is the worst possible for deterministic
algorithms, from the standpoint of competitive analysis. There is a strictly 2-competitive
deterministic online algorithm. In fact, a competitive ratio of 2 is achieved by the most näıve
algorithm: the greedy algorithm that matches each new vertex j to an arbitrary unmatched
neighbor, i, whenever an unmatched neighbor exists.

Exercise 2. Prove that the greedy algorithm for online bipartite matching is strictly 2-
competitive.

4.3 Online fractional matching: the waterfilling algorithm

It turns out that online fractional matching algorithms can achieve competitive ratios sig-
nificantly better than 2, as we will see in this section.

First, a useful bit of terminology: we will refer to the sum
∑

j∈R xij as the fractional
degree of vertex i in fractional matching x. For a vertex j ∈ R the fractional degree is
defined similarly.

Perhaps the most natural idea for online fractional matching is to have each vertex j
balance load equally among its neighbors. In other words, if a new vertex j arrives and has
d neighbors, then for each neighbor i we set the value of xij to be 1/d, unless that would
violate the degree constraint of vertex i (the constraint that

∑
j xij ≤ 1) in which case we

merely increase xij as much as possible given the degree constraint.

However, this “stateless balancing” algorithm fails to be better than 2-competitive. To
construct a counterexample, we take the example form Section 4.1 and blow up each vertex
into n vertices, carefully modifying the edge set to cause the algorithm to make catastrophic
decisions. The set L now has 2n vertices, which we will label as a1, a2, . . . , an, b1, b2, . . . , bn,
and the set R has 2n vertices labeled c1, c2, . . . , cn, d1, d2, . . . , dn. Each vertex cj has n + 1
neighbors: it is connected to aj and also to b1, b2, . . . , bn. Each vertex dj has only one
neighbor, namely bj. The maximum matching in this graph has size 2n: it matches (ai, ci)
and (bi, di) for i = 1, . . . , n. If the vertices c1, . . . , cn, d1, . . . , dn arrive in that order, the
stateless balancing algorithm will first assign a value of 1

n+1
to each edge incident to c1, . . . , cn.

Thus, when d1, . . . , dn start arriving, each of them has a unique neighbor and the fractional
degree of that neighbor is already n

n+1
, so dj can contribute only 1

n+1
additional units to the

size of the fractional matching. Thus, when the algorithm is finished processing the entire
graph, the total size of its fractional matching is n+ n

n+1
, only slightly more than half of the

optimum.

What went wrong in this algorithm? The vertices b1, . . . , bn are more “highly demanded”
than a1, . . . , an and it was unwise for vertices c1, . . . , cn to use up almost all of the capacity
of b1, . . . , bn while using almost none of a1, . . . , an. The first vertex, c1, can be forgiven
for making this mistake since all of its neighbors looked indistinguishable when it arrived.
But later on, we should have known better: we had already seen that the capacities of
b1, . . . , bn were being depleted and should have taken measures to conserve that capacity. In
short, there was nothing evidently wrong with the load-balancing idea, but it was silly to do

27

stateless load-balancing; instead, we should have kept track of the current state (the amount
of load already placed on each vertex in L) and adjusted our load-balancing decisions to
correct for imbalances in the current load vector.

This bring us to the waterfilling algorithm. It keeps track of a “water level” for each
i ∈ L representing the current fractional degree d(i) =

∑
j xij, summing over all vertices

j ∈ R that have arrived in the past. When a new vertex j arrives, it allocates its one unit of
fractional degree among its neighbors by finding the neighbors with the lowest water level
and continuously raising their water level until either one unit of water has been poured
into the graph, or the water level of all neighbors reaches 1, whichever comes first. In less
metaphorical terms, the algorithm finds the unique number ˆ̀(j) such that∑

i∈N(j)

max{ˆ̀(j), d(i)} = 1 +
∑
i∈N(j)

d(i),

where N(j) represents the set of all neighbors of j. It then sets

`(j) = min{ˆ̀(j), 1}
xij = max{`(j), d(i)} − d(i) ∀(i, j) ∈ E

and it updates d(i) to d(i) + xij for all i.

We will analyze the waterfilling algorithm using the primal-dual method. This means
that we’ll use the fractional matching LP

max
∑

i,j xij
s.t.

∑
j xij ≤ 1 ∀i∑
i xij ≤ 1 ∀j

xij ≥ 0 ∀i, j

and its dual
min

∑
i αi +

∑
j βj

s.t. αi + βj ≥ 1 ∀(i, j) ∈ E
αi, βj ≥ 0 ∀i, j

In particular, we define a dual solution (αi)i∈L, (βj)j∈R by specifying that

αi = g(d(i)) ∀i (14)

βj = 1− g(`(j)) ∀j, (15)

where

g(y) =
ey − 1

e− 1
.

The choice of this specific function g will make more sense later in the analysis. The vital
properties of g that are needed in the analysis are:

1. g is an increasing function.
2. g(0) = 0
3. g(1) = 1

28

4. 1− g(t) + g′(t) = e
e−1

for all t.

First, let’s observe that the dual solution defined by (14)-(15) is feasible. This is be-
cause at the time we finish processing vertex j, the inequality d(i) ≥ `(j) is satisfied by
all neighboring vertices i. Since the value d(i) will not subsequently decrease, we also have
d(i) ≥ `(j) at termination. Furthermore, since g is an increasing function, we have

αi + βj = g(d(i)) + 1− g(`(j)) ≥ g(`(j)) + 1− g(`(j)) = 1,

which verifies dual feasibility.

We claim that the fractional matching and the dual solution computed by our algorithm
satisfy

e

e− 1

∑
(i,j)∈E

xij ≥
∑
i∈L

αi +
∑
j∈R

βj. (16)

By the weak duality, the sum on the right side is an upper bound on the size of any frac-
tional matching in G, and therefore (16) implies that the waterfilling algorithm is

(
e
e−1

)
-

competitive.

To prove (16), we compare βj with a parameter β′j defined as follows. For t ∈ [0, 1] let
nj(t) denote the number of edges (i, j) ∈ E such that the inequality d(i) ≤ t held at the
time when j arrived. Note that ∫ `(j)

0

nj(t) dt = 1

provided that `(j) < 1, because in that case vertex j contributed one unit of “water” and
the integrand denotes the rate at which water was filling the system as we increased the
water level ` from t to t+ dt. Now, define

β′j =

∫ `(j)

0

(1− g(t)) · nj(t) dt.

The inequality β′j ≥ βj always holds: when `(j) = 1 this is because βj = 0, and when
`(j) < 1 it is because 1− g(t) is a decreasing function of t and therefore∫ `(j)

0

(1− g(t)) · nj(t) dt > (1− g(`(j)) ·
∫ `(j)

0

nj(t) dt = 1− g(`(j)) = βj.

Letting d(i) denote the degree of a vertex i ∈ L before the arrival of vertex j, the amount

29

by which the dual objective increases when processing j is:

βj +
∑
i∈N(j)

[g(`(j))− g(d(i))] = 1− g(`(j)) +
∑
i∈N(j)

∫ `(j)

d(i)

g′(t) dt

= 1− g(`(j)) +

∫ `(j)

0

g′(t) · nj(t) dt

≤
∫ `(j)

0

[1− g(t) + g′(t)] · nj(t) dt

=
e

e− 1

∫ `(j)

0

nj(t) dt

=
e

e− 1

∑
i∈N(j)

xij,

hence the increase in the dual objective is at most e
e−1

times the increase in the primal ob-
jective. Since the primal and dual objectives both start out at zero, this means that the dual
objective at termination is at most e

e−1
times the primal objective, certifying inequality (16)

and completing the proof that the waterfilling algorithm is
(

e
e−1

)
-competitive.

4.4 The waterfilling algorithm is optimal

It turns out that e
e−1

is precisely the best competitive ratio that can be achieved by an
online fractional matching algorithm. To prove this, we consider an arbitrary fractional
matching algorithm ALG and evaluate its performance on a random input sequence generated
as follows. The graph G has vertex sets L = R = [n] = {1, . . . , n}. We sample a uniformly
random permutation π of the set [n], and we define the edge set of the graph to be

E = {(π(i), j) | i ≥ j}.

The elements of R arrive in the order j = 1, 2, . . . , n.

Observe first that there is always a perfect matching in G, consisting of the edges (π(j), j)
for j = 1, . . . , n. In fact, this is the unique perfect matching in G: one can easily show that
every perfect matching must contain the edge (π(j), j) for all j ∈ [n], by downward induction
on j starting from j = n.

To place an upper bound on the expected size of the matching produced by ALG, we
argue as follows. The expected value of xπ(i),j is zero if i < j, and it is at most 1

n+1−j if

i ≥ j. To see this latter fact, note that for any two elements i, k ∈ {j, j + 1, . . . , n}, we have
E[xπ(i),j] = E[xπ(k),j] by symmetry, since the subgraph of G consisting of all edges observed
up until time j has an automorphism that exchanges i and k. Since xπ(j),j = xπ(j+1),j =
· · · = xπ(n),j and the sum of these numbers is at most 1, each of them is at most 1

n+1−j .

Now, let k = n − dn/e e, and observe that
∑k

j=1
1

n+1−j is between 1 − 5
n

and 1. This is
proven by the integral test:

k∑
j=1

1

n+ 1− j
<

∫ n

n/e

dx

x
= 1

30

while

5

n
+

k∑
j=1

1

n+ 1− j
>

1

n+ 5
+

1

n+ 5
+ · · ·+ 1

n+ 1
+

k∑
j=1

1

n+ 1− j
>

∫ n+6

(n+6)/e

dx

x
= 1.

The expected size of the fractional matching produced by ALG is bounded above by:

n∑
i=1

E

[
i∑

j=1

xπ(i),j

]
≤

k∑
i=1

i∑
j=1

1

n+ 1− j
+

n∑
i=k+1

1

<

k∑
i=1

i∑
j=1

1

n+ 1− j
+

n∑
i=k+1

[
5

n
+

k∑
j=1

1

n+ 1− j

]

< 5 +
k∑
j=1

(k + 1− j) + (n− k)

n+ 1− j

= 5 + k < 5 +

(
1− 1

e

)
n.

As the expected size of the maximum matching is n, and the expected size of the fractional
matching produced by ALG is bounded above by 5 +

(
e−1
e

)
n, we see that ALG cannot be

c-competitive for any c < e
e−1

.

4.5 Randomized online matching: The ranking algorithm

(Most of this section is an excerpt from the paper “Randomized Primal-Dual Analysis of
ranking for Online Bipartite Matching” by N. Devanur, K. Jain, and R. Kleinberg, 2012.)

Given an online fractional matching algorithm, it is tempting to try constructing a ran-
domized online matching algorithm whose probability of choosing edge (i, j) is equal to the
value xij computed by the fractional matching algorithm. If such a transformation were
possible, it would yield a randomized online matching algorithm whose competitive ratio is
exactly the same as that of the given fractional matching algorithm. Unfortunately, such a
transformation is not possible in general. (For example, there is no randomized matching
algorithm whose probability of selecting each edge (i, j) is exactly equal to the value assigned
to that edge by the waterfilling algorithm. It is quite instructive to try proving this.)

However, there is a randomized online matching algorithm, known as ranking, that
achieves exactly the same competitive ratio as the waterfilling algorithm, namely e

e−1
. Since

the existence of a c-competitive randomized online matching algorithm implies the exis-
tence of a c-competitive online fractional matching algorithm, we can deduce that ranking
achieves the best possible competitive ratio for randomized online matching algorithms.

The ranking algorithm is actually very intuitive: at initialization time, it samples a
uniformly random total ordering of the vertices in L. Subsequently, as each vertex j ∈ R
arrives, if j has an unmatched neighbor in L then we choose the unmatched neighbor i that
comes earliest in the random ordering, and we add (i, j) to the matching.

31

To analyze the ranking algorithm, we begin with a reinterpretation of the algorithm in
a way that is conducive to our analysis. Instead of picking a random total ordering of the
vertices in L, each vertex in L picks a random number in [0, 1] and a vertex j ∈ R, upon its
arrival, is assigned to the unmatched neighbor who picked the lowest number. The algorithm
is presented as Algorithm 7 below.

Algorithm 7 The ranking algorithm.

1: for all i ∈ L do
2: Pick Yi ∈ [0, 1] uniformly at random
3: end for
4: for all j ∈ R do
5: When j arrives, let N(j) denote the set of unmatched neighbors of j
6: if N(j) = ∅ then
7: j remains unmatched
8: else
9: Match j to arg min{Yi : i ∈ N(j)}
10: end if
11: end for

To analyze the algorithm, we note the standard LP relaxation for matching and its dual.

maximize
∑

(i,j)∈E

xij s.t. minimize
∑
i∈L

αi +
∑
j∈R

βj s.t.

∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1. ∀ (i, j) ∈ E,αi + βj ≥ 1.

∀ (i, j) ∈ E, xij ≥ 0. ∀ i, j, αi, βj ≥ 0.

Our analysis constructs a dual solution which is also randomized. The dual variables
we construct may not always be feasible; in other words, they may violate the constraint
αi + βj ≥ 1 for some edges (i, j). However, the expected values of the dual variables will
constitute a feasible dual solution. The competitive ratio of e

e−1
will follow from the fact

that the value of the dual solution is always e
e−1

times the size of the matching found, and
that the expectation of the dual variables constitutes a feasible dual solution (whose value,
of course, is also e

e−1
times the expected size of the matching found).

Our construction of the duals depends on a monotone non-decreasing function h that is
closely related to the function g that came up in the analysis of the waterfilling algorithm
in Section 4.3. The formula for h is h(y) = ey−1 and its relevant properties are:

1. h is an increasing function;
2. h(1) = 1;

3. ∀θ ∈ [0, 1]
∫ θ

0
h(y) dy + 1− h(θ) = e−1

e
.

Note the similarity between the integral equation in property 3 of h and the differential equa-
tion in property 4 of the function g in Section 4.3; note also, however, that if we differentiate

32

both sides of the integral equation defining h we certainly don’t get the differential equation
defining g.

Whenever i is matched to j, let

αi = e
e−1
· h(Yi), βj = e

e−1
· (1− h(Yi)).

For all unmatched i and j, set αi = βj = 0. It will be useful to interpret the algorithm
as follows: on matching i to j, we generate a value of 1 for the primal, which translates
to a value of e

e−1
for the dual. Each unmatched vertex i ∈ L that is a neighbor of j offers

e
e−1
· (1− h(Yi)) of this value to j (to be assigned to βj), while keeping the rest to itself (to

be assigned to αi). Then j is matched to the vertex that makes the highest offer.

Before we show that the expectation of the duals is feasible, we need certain properties
of the algorithm specified by the following two lemmas. Let (i, j) ∈ E be any edge in the
graph. Consider an instance of the algorithm on G \ {i}, with the same choice of Yi′ for all
other i′ ∈ L. Let yc be the value of Yi′ for the i′ that is matched to j. Define yc to be 1 if j
is not matched. Let βcj be the value of βj in this run, i.e. βcj = e

e−1
· (1− h(yc)).

Lemma 15 (Dominance Lemma). Given Yi′ for all other i′ ∈ L, i gets matched if Yi < yc.

Proof. Suppose i is not matched when j arrives. This means that the run of the algorithm
until then is identical to the run without i. From the definition of yc, in the run without i,
j is matched to i′ such that Yi′ = yc. Since Yi < yc, j is matched to i.

Lemma 16 (Monotonicity Lemma). Given Yi′ for all other i′ ∈ L, for all choices of Yi,
βj ≥ βcj .

Proof. Consider executing the algorithm on graphs G and G \ {i} in parallel. At the start
of every step of the two parallel executions, the unmatched vertices in L for the G execution
constitute a superset of the unmatched vertices in L for the G\{i} execution. This statement
is easily proven by induction: given that it holds at the start of one step, the only way it
could be violated at the start of the next step is if the G execution chooses a vertex i′ ∈ L
that is also unmatched, but is not chosen, in the G \ {i} execution. Instead the G \ {i}
execution must choose some other vertex i′′ such that Yi′′ < Yi′ . By our induction hypothesis
i′′ was also unmatched in the G execution, contradicting the fact that the algorithm chose i′

instead.

When node j arrives, its unmatched neighbors in the G execution form a superset of its
unmatched neighbors in the G\{i} execution, so in the both executions j has an unmatched
neighbor whose Y -value is yc. If the algorithm instead chooses another neighbor of j, its
Y -value can be at most yc and hence, by the monotonicity of h, we have βj ≥ βcj .

We now show that the above properties of h imply a competitive ratio of e
e−1

for ranking.

Lemma 17. ranking is e
e−1

-competitive.

Proof. Whenever i is matched to j, αi + βj = e
e−1

. Therefore the ratio of the dual solution
to the primal is always e

e−1
. We show that the dual is feasible in expectation. In particular,

we show that for all (i, j) ∈ E,
EYi [αi + βj] ≥ 1

33

for all choices of Yi′ for all i′ 6= i ∈ L. By the Dominance Lemma (Lemma 15) i is matched
whenever Yi ≤ yc. Hence

EYi [αi] ≥
e

e− 1

∫ yc

0

h(y) dy.

By the Monotonicity Lemma (Lemma 16), βj ≥ βcj = e
e−1
· (1 − h(yc)) for all choices of Yi.

The lemma now follows from the integral equation listed above as property 3 of h.

5 Algebraic Algorithms for Matching Problems

The close relationship between matrix determinants and perfect matchings has surprising
and beautiful algorithmic applications, which we explore in this section.

5.1 Permanents, determinants, and graph matchings

For a bipartite graph G = (L,R,E) with |L| = |R| = n, let L = {u1, u2, . . . , un} and
R = {v1, v2, . . . , vn} and define A to be the “bipartite adjacency matrix” whose entries are

Aij =

{
1 if (ui, vj) ∈ E
0 otherwise.

The number of perfect matchings in G is expressed by a multivariate polynomial in the
entries of A called the permanent.

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i).

Here the sum is over all permutations σ of the index set {1, 2, . . . , n}; this set of permutations
is denoted by Sn.

The sum defining per(A) has n! terms, so it is not apparent how to evaluate it efficiently.
In fact, the problem of computing the permanent of a matrix is known to be complete for the
complexity class]P, which is at least as hard as NP and generally believed to be much harder.
On the other hand, a very similar polynomial that is easy to evaluate is the determinant of
a matrix,

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i).

The only difference is the factor sgn(σ), which equals +1 if σ is the product of an even
number of transpositions and −1 if σ is the product of an odd number of transpositions.

The determinant can be evaluated in polynomial time, for example using Gaussian elim-
ination to perform a sequence of elementary row operations to put it in upper triangular
form. This allows us to express an arbitrary matrix A in the form

A = E1E2 . . . EmU

34

where U is an upper triangular matrix and each of E1, E2, . . . , Em is an elementary matrix.
(An elementary matrix is a matrix obtained from the identity matrix by either transposing
two rows or modifying one entry. In the former case, its determinant is -1, in the latter case
its determinant is the product of its diagonal entries.) Since the determinant of an elemen-
tary matrix is easy to evaluate, and since the determinant of an upper triangular matrix is
the product of its diagonal entries, the relation det(A) = (

∏m
i=1 det(Ei)) ·det(U) allows us to

efficiently evaluate det(A). A näıve implementation of this Gaussian elimination algorithm
takes O(n3) time: the elementary matrices E1, . . . , Em are computed by performing a se-
quence of O(n2) elementary row operations on A, and each row operation entails performing
O(n) arithmetic operations. Later in this section we will discuss how to compute det(A) in
O(nω+o(1)) time, where O∗(nω+o(1)) denotes the number of arithmetic operations required for
multiplying two n-by-n matrices. (The exponent is written as ω+o(1) to account for the pos-
sibility that there is no algorithm whose running time is precisely O(nω), but instead there
is an algorithm whose running time is O(nω+ε) for every ε > 0.) Fast matrix multiplication
remains an active area of research; at the time of writing these notes, the asymptotically
fastest known algorithm, due to Alman and Vassilevska Williams, runs in time O(n2.373).

One consequence of these observations is that, although evaluating the permanent of an
integer matrix is thought to be computationally hard, it is easy to determine whether the
permanent is even or odd. This is because sgn(σ) ≡ 1 (mod 2) for every permutation σ, so
the permanent and determinant of an integer matrix are always congruent mod 2. Hence,
perhaps surprisingly, there is an efficient algorithm to determine whether a bipartite graph
has an even or odd number of perfect matchings.

5.2 Lovász’s algorithm for perfect matching detection

It is rarely useful to know whether a graph has an even or odd number of perfect matchings,
but it is often useful to know whether a graph has at least one perfect matching. There is a
randomized algorithm, discovered in 1979 by Lovász, that reduces this problem to computing
a matrix determinant. Since this algorithm runs in time O(n2.373), it is asymptotically
faster than the O(m

√
n) running time of the Hopcroft-Karp algorithm when the graph G is

sufficiently dense, having m� n1.873 edges.

Let B be a matrix defined similarly to the matrix A, but using formal variables xij, one
for each edge (ui, vj) of the bipartite graph.

Bij =

{
xij if (ui, vi) ∈ E
0 otherwise.

The multivariate polynomial det(B) is non-zero if and only if G has a perfect matching.
That is because the formula

det(B) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Bij

expresses det(B) as a sum of n! terms, each of which is either zero, if the set of pairs
M = {(ui, vσ(i))} does not constitute a perfect matching in G, or a monomial of degree n in

35

the formal variables {xij}, if M is a perfect matching in G. Furthermore, in case G has at
least one perfect matching, distinct perfect matchings correspond to monomials with distinct
sets of variables, so there is no cancellation in the above formula and the polynomial det(B)
is non-zero.

Since det(B) is a multivariate polynomial that can potentially have as many as n! dis-
tinct monomials, directly evaluating det(B) is computationally inefficient. Instead, Lovász’s
algorithm substitutes random numbers Xij in place of the formal variables xij and evaluates
the determinant of the resulting matrix. If the determinant is non-zero, then det(B) must
be a non-zero polynomial. However, if the determinant evaluates to zero after substituting
{Xij}, it is still possible that det(B) is a non-zero polynomial and we just made an unlucky
substitution that caused the polynomial to evaluate to zero. However, we can bound the
probability of this unlucky event using a fact known as the Schwartz-Zippel Lemma.

Lemma 18 (Schwartz-Zippel). Let P [x1, . . . , xm] be a non-zero multivariate polynomial with
coefficients in a field F, and suppose that the exponent of any variable in any monomial of
P is at most d. If S is a set of s elements of F and X1, . . . , Xm are independent random
variables, each uniformly distributed over S, then the probability that P (X1, . . . , Xm) = 0 is
at most md

s
.

Proof. The proof is by induction on m. In the base case m = 0, P is a non-zero constant so
the probability that it evaluates to zero is indeed equal to zero. For the induction step, let
c ≤ d denote the maximum degree of the variable xm in any monomial of P . We can express
P as

P (x1, . . . , xm) =
c∑
i=0

Qi(x1, . . . , xm−1)xim,

where each Qi is a polynomial in x1, . . . , xm−1 and Qc 6= 0. If P (X1, . . . , Xm) = 0 then one
of the following two events must happen.

1. Qc(X1, . . . , Xm−1) = 0, or

2. Qc(X1, . . . , Xm−1) 6= 0 but P (X1, . . . , Xm) = 0.

By the induction hypothesis, the first of these two events has probability at most (m−1)d/s.
For any fixed X1, . . . , Xm−1 such that Qc(X1, . . . , Xm−1) 6= 0, the second event happens only
when Xm is a root of the polynomial R(x) =

∑c
i=0Qi(X1, . . . , Xm−1)xi. Since a polynomial

of degree c has at most c roots in F, the probability that Xm is equal to one of these
roots is at most c/s, which is less than or equal to d/s. Summing the probabilities of
the two events, we find that the probability of the event P (X1, . . . , Xm) = 0 is at most
(m− 1)d/s+ d/s = md/s.

Corollary 19. Let G = (L,R,E) be a bipartite graph with vertex sets L = {u1, . . . , un} and
R = {v1, . . . , vn}. For any δ > 0, let S be a set of at least m/δ distinct integers, where m is
the number of edges of G. Consider the random matrix C formed by sampling independent
random numbers Xij, each uniformly distributed in S, and assembling them into the matrix

Cij =

{
Xij if (ui, vj) ∈ E
0 otherwise.

36

If G has no perfect matching then det(C) = 0, and if G has a perfect matching then det(C) 6=
0 with probability at least 1− δ.

5.3 Fast algorithms for matrix inversion

To finish analyzing Lovász’s randomized algorithm for deciding whether a bipartite graph
contains a perfect matching, we explain how to decide in O(nω+o(1)) time whether the deter-
minant of a matrix is zero. It turns out that the determinant of a matrix over an arbitrary
ring can be computed in O(nω+o(1)) ring operations. That algorithm is more complicated
than necessary for the present application, which only requires testing whether a matrix
defined over the real numbers has a non-zero determinant, so we will present a simpler
algorithm that suffices for that application.

The starting point of our algorithm is the observation that for a matrix A over any field,
the following properties are equivalent:

1. det(A) 6= 0

2. A is invertible

3. ATA is invertible

Crucially, when A is a matrix over the real numbers, the matrix C = ATA is symmetric and
positive semidefinite. It is invertible if and only if it is strictly positive definite. Therefore,
to test whether det(A) = 0 for an arbitrary matrix A, it suffices to be able to test whether
a symmetric positive semidefinite matrix is invertible.

We will define a recursive algorithm AttemptInvert which, when applied to a sym-
metric positive semidefinite matrix, either computes the inverse matrix or determines that
the matrix is not invertible. We will assume the matrix is n×n where n is a power of 2. If n
is not a power of 2, then one should perform the following preprocessing step before running
time algorithm. Let N be a power of 2 such that n < N < 2n, and let C ′ be the N × N
matrix with the following block structure.

C ′ =

(
C 0
0 1

)
Here, 1 denotes the identity matrix. The matrix C ′ is invertible if and only if C is, and the
inverse of C ′ contains the inverse of C as its upper n× n block; hence, inverting C ′ implies
that we can easily find the inverse of C.

Assuming n is a power of 2, we partition C into square blocks of size (n
2
)×(n

2
), as follows.

C =

(
C11 C12

C21 C22

)
Now, we use the following identity, which is valid when C11 is invertible.(

C11 C12

C21 C22

)
=

(
1 0

C21C
−1
11 1

)(
C11 0
0 C22 − C21C

−1
11 C12

)(
1 C−1

11 C12

0 1

)
. (17)

37

The matrix S = C22 − C21C
−1
11 C12 is called the Schur complement of C11 in C. Inverting

both sides of equation (17) we obtain(
C11 C12

C21 C22

)−1

=

(
1 −C−1

11 C12

0 1

)(
C−1

11 0
0 S−1

)(
1 0

−C21C
−1
11 1

)
(18)

This equation implies the following recursive algorithm. If n = 1, the matrix C is a scalar.
The algorithm either outputs its inverse, or if C = 0 it outputs “not invertible.” If n > 1 is
a power of 2, we perform the following steps.

1. Run AttemptInvert(C11) to obtain C−1
11 . If C11 is not invertible, output “not in-

vertible”.

2. Compute C−1
11 C12 and its transpose, C21C

−1
11 .

3. Compute S = C22 − C21C
−1
11 C12.

4. Run AttemptInvert(S) to obtain S−1. If S is not invertible, output “not invertible.”

5. Use equation (18) to compute C−1.

The algorithm inverts a matrix of size n by recursively calling matrix inversion on two matri-
ces of size n/2 and performing a constant number of matrix multiplication (and subtraction)
operations on matrices of size n or n/2. Hence, its running time T (n) satisfies the recurrence
T (n) = 2T (n/2) +O(nω+o(1)), whose solution is T (n) = O(nω+o(1)).

Equation (18) justifies that when the algorithm outputs a matrix (as opposed to out-
putting the message “not invertible”) then its output is indeed the inverse of C. To finish
proving the correctness of the algorithm we must show, conversely, that when C is invertible
the algorithm outputs the inverse of C, i.e. it will never mistakenly output “not invert-
ible”. The proof is by induction on n, and the key observation here is that C is assumed to
be symmetric and positive semidefinite. If C is also invertible, then it is positive definite,
meaning that xTCx > 0 for every x 6= 0. This implies that C11 is invertible, as otherwise
a non-zero vector y ∈ Rn/2 that satisfies C11y = 0 could be padded with zeroes to obtain
a non-zero vector x ∈ Rn satisfying xTCx = 0, contradicting the positive definiteness of C.
Having established that C11 is invertible, we apply the induction hypothesis to deduce that
the recursive call to AttemptInvert(C11) will succeed in inverting it. Now, by taking the
determinant of both sides of equation (17), we see that det(C) = det(C11) det(S). Since
det(C) and det(C11) are both non-zero, it follows that det(S) 6= 0 as well. By another ap-
plication of the induction hypothesis, the recursive call to AttemptInvert(S) will likewise
succeed in inverting S. Consequently, the algorithm will succeed in inverting C, as desired.

This concludes the analysis of Lovász’s algorithm for deciding whether a bipartite graph
contains a perfect matching. Before moving on, however, we should mention that Mucha and
Sankowski in 2004 discovered a randomized algorithm with running time O(nω+o(1)) that not
only decides whether a bipartite graph contains a perfect matching, it also finds the perfect
matching (with probability close to 1) if one exists. Presenting their algorithm would be
beyond the scope of these lecture notes, however the following lemma at least provides a
useful initial step.

38

Lemma 20. Let G = (L,R,E) be a bipartite graph with vertex sets L = {u1, . . . , un} and
R = {v1, . . . , vn} and let B be the matrix given by

Bij =

{
xij if (ui, vj) ∈ E
0 otherwise

where the xij are formal variables. For any edge (ui, vj) ∈ E, the graph G has a perfect
matching containing edge (ui, vj) if and only if B is invertible and the matrix entry (B−1)ji
is a non-zero element of the field of rational functions of the variables {xij}.

Proof. We have seen that G has a perfect matching if and only if B is invertible. Now, let
G−ij denote the graph obtained from G by deleting ui and vj. For any edge e = (ui, vj),
the existence of a perfect matching in G containing edge e is equivalent to the existence of a
perfect matching in G−ij. If B−ij denotes the matrix obtained from B by deleting row i and
column j, then G−ij has a perfect matching if and only if B−ij is invertible, i.e. det(B−ij) 6= 0.
Now, Cramer’s rule tells us that

(B−1)ji = (−1)i+j det(B−ij)/ det(B).

Hence, the existence of a perfect matching in G containing edge e is equivalent to the
condition that (B−1)ji 6= 0.

As before, we can substitute random values for the variables xij by sampling numbers
uniformly at random from a sufficiently large set S, to form a random matrix C. Then
an application of the Schwartz-Zippel Lemma will ensure that with high probability, the
non-zero entries of the matrix C−1 correspond precisely to the set of edges that belong to
a perfect matching. Since the matrix inverse can be computed in O(nω+o(1)) time, this
gives a O(nω+o(1))-time randomized algorithm that not only decides whether G contains a
perfect matching, but also finds an edge that belongs to a perfect matching in G in the
event that a perfect matching exists. The näıve idea of iterating this algorithm n times to
discover the edges of a perfect matching one by one would lead to an algorithm with running
time O(nω+1+o(1)), which is slower than Hopcroft-Karp even for dense graphs. Mucha and
Sankowski instead found a way to interleave the process of finding edges of the matching with
the steps of the divide-and-conquer matrix inversion algorithm, so that a perfect matching is
computed simultaneously with executing a single instance of matrix inversion in O(nω+o(1))
time.

5.4 Digression: detecting cliques using fast matrix multiplication

Detecting perfect matchings in bipartite graphs is not the only surprising application of
fast matrix multiplication to the design of combinatorial algorithms. For example, consider
the problem of deciding whether a given undirected graph contains a triangle. The näıve
algorithm for this problem tests every set of

(
n
3

)
vertices to determine whether they induce

a triangle; this brute-force search algorithm runs in time O(n3). A faster algorithm to test
for the presence of a triangle is based on the observation that G contains a triangle if and

39

only if there are two vertices u and v such that u and v are joined by an edge and they are
also joined by a path of length 2. In other words, G contains a triangle if and only if its
adjacency matrix A has a non-zero entry in a location where the squared adjacency matrix
A2 also has a non-zero entry. Since A2 can be computed in O(nω+o(1)) time, and it only
takes O(n2) time to perform a brute-force search for a pair u, v such that the (u, v) entries
of A and A2 are both non-zero, this yields a triangle-detection algorithm running in time
O(nω+o(1)).

Similarly, fast matrix multiplication can be used to design an algorithm for detecting a
k-clique in an undirected graph, with running time faster than the näıve O(k2nk) brute-force
search. For simplicity assume k is divisible by 3. Let N =

(
n
k/3

)
= O(nk/3), and consider

the N -vertex graph H with one vertex vS corresponding to each set of k/3 vertices of G.
Place an edge (vS, vT) in H if the vertex set S ∪ T constitutes a (2k/3)-clique in G. The
brute-force algorithm to compute the adjacency matrix of H takes time O(k2N2), since there
are N2 entries in the adjacency matrix and for each entry we need to test for the presence
of
(

2k/3
2

)
= O(k2) edges in G to determine whether there is an edge between vS and vT in H.

Now, observe that G contains a k-clique if and only if H contains a triangle. We have seen
that there is an algorithm to decide whether H contains a triangle that runs in time

O(Nω+o(1)) = O(n(k/3)·(ω+o(1))) = O(n(ω/3+o(1))·k).

This algorithm, due to Nešetřil and Poljak (1985) is still the asymptotically fastest known
algorithm for deciding if a graph contains a k-clique. Since ω < 2.373, its running time is
O(n0.791 k).

5.5 Parallel algorithms for finding perfect matchings

The relationship between matchings and determinants can also be leveraged to design a
randomized parallel algorithm for finding a perfect matching (if one exists) in a bipartite
graph.

5.5.1 Overview of parallel complexity theory

Before we present the algorithm for finding a perfect matching, we must explain a bit about
the theory of parallel algorithms. Just as sequential algorithms can be modeled as Turing
machines or random access machines (RAMs), or as uniform1 families of Boolean circuits,
parallel algorithms can either be modeled as parallel random access machines (PRAMs)
or as uniform families of Boolean circuits. The PRAM definitions are a bit complicated
because one must specify the conventions for dealing with concurrency: a PRAM can be
either CRCW (concurrent read, concurrent write), CREW (concurrent read, exclusive write),
or EREW (exclusive read, exclusive write). The Boolean circuit definition is much more
straightforward: a circuit is simply a directed acyclic graph whose vertices (called “gates”)
are associated with the operations input, and, or, not. An input gate has in-degree

1Here, the word “uniform” means that there is a Turing machine which, on input 1n, writes a description
of the Boolean circuit to be used for solving problem instances of input size n.

40

0 and a not gate has in-degree 1. The in-degree of an and or or gate is called its “fan-
in”. If the circuit has n input gates, it can be evaluated on n-bit inputs by labeling each
input gate with the corresponding bit of the input string, labeling each edge with its tail’s
label, and labeling every non-input gate with the bit obtained by performing the associated
Boolean operation on the bits that label its incoming edges. When using such a circuit to
model a parallel algorithm, the assumption is that if a set of gates forms an antichain in
the directed acyclic graph (meaning that no two of them are joined by a directed path) then
they represent operations that can be executed in parallel (i.e., simultaneously) at any time
after the labels of all of their incoming edges have been computed.

The two parameters that govern a parallel algorithm’s complexity are its work — the
total number of gates in the circuit — and its running time, which is defined to be the
length of the longest path in the directed acyclic graph. Equivalently, the running time is
t if the vertices can be organized into a sequence of t antichains such that for every edge
(u, v), the antichain containing u occurs before the antichain containing v. These antichains
represent the operations performed at the successive time steps of the parallel algorithm.

The complexity theory of parallel algorithms tends to focus on the question of which
problems can be solved by an algorithm that performs nO(1) work in logO(1)(n) time, where
n is the input size. For a non-negative integer i, a problem belongs to NCi if it there is a
parallel algorithm that solves it in nO(1) work and logi(n) time, in which each gate has fan-in
at most 2. If one instead allows gates to have unbounded fan-in, one obtains the complexity
class ACi. It is evident that NCi ⊆ ACi ⊆ NCi+1; to prove the second containment, note
that an and or or gate with fan-in nO(1) can be simulated by a depth O(log n) binary tree
of and or or gates. A consequence of these containments is that

⋃
i∈NNC

i =
⋃
i∈NAC

i.
The complexity class represented by this union is called NC and plays a role in the theory
of parallel algorithms comparable to the role of the complexity class P in the theory of
sequential algorithms. A major conjecture in parallel complexity theory is that NC 6= P.

5.5.2 Parallel algorithms for addition and multiplication

In this section we explain how to add and multiply integers and matrices in parallel in
O(log n) time and poly(n) work.

Integer addition. The challenge of designing fast parallel algorithms comes into view
immediately when we consider how to add two n-bit integers in O(log n) time. The grade-
school algorithm for addition requires “carrying” when the sum in a given place value exceeds
one digit. The question of whether to carry a 1 from the digit sum in the nth place value may
depend on the carry digit from the (n− 1)th place value, which in turn may depend on the
carry digit from the (n − 2)th place value, and so on, leading to a chain of n dependencies.
Fortunately the computation can be reorganized so that the chains of dependencies are only
logarithmic in length, at the cost of doing O(n log n) work rather than O(n) work as in the
standard grade-school algorithm.

Let us number digits from least significant to most significant, so that the operands a and
b are represented by binary digit sequences an−1, an−2, . . . , a0 and bn−1, bn−2, . . . , b0. In other
words, a =

∑n−1
i=0 ai2

i and b =
∑n−1

i=0 bi2
i. Define ci, the “carry digit in place value i”, to be

41

1 if the grade-school algorithm for adding a and b carries a 1 from the sum in place value
i− 1 to the sum in place value i, and otherwise ci = 0. Equivalently, and more precisely,

ci =

⌊
i−1∑
j=0

(aj + bj)2
j−i

⌋
.

Our algorithm will compute symbols ci,k ∈ {0, 1, ∗} for 0 ≤ i < n and 0 ≤ k ≤ dlog2(n)e,
with the following meaning. If ci,k = 0 or ci,k = 1 it means that the carry digit in place value
i is assured of being 0 (or 1, respectively) based on the values of the digits ai−1, ai−2, . . . , ai−2k

and bi−1, bi−2, . . . , bi−2k . If ci,k = ∗ it means that the carry digit in place value i depends on
the carry digit in place value i − 2k; in fact, it means those two carry digits must be equal
to one another. Equivalently, and more precisely,

ci,k = 1 ⇐⇒
i−1∑

j=i−2k

(aj + bj)2
j−i ≥ 1

ci,k = 0 ⇐⇒
i−1∑

j=i−2k

(aj + bj)2
j−i < 1− 2−2k

ci,k = ∗ ⇐⇒
i−1∑

j=i−2k

(aj + bj)2
j−i = 1− 2−2k

where aj and bj are interpreted as being equal to zero when j < 0. These values ci,k obey
the recurrence

ci,0 =


0 if aj = bj = 0

1 if aj = bj = 1

∗ if aj 6= bj

(19)

ci,k


0 if ci,k−1 = 0 or i− 2k−1 < 0

1 if ci,k−1 = 1

ci−2k−1,k−1 if ci,k−1 = ∗ and i− 2k−1 ≥ 0

(20)

and when k = dlog2(n)e the value of ci,k is equal to the carry digit ci defined earlier. Rela-
tions (19) and (20) can be interpreted as a parallel algorithm for computing all of the values
ci,k (0 ≤ i < n, 0 ≤ k ≤ dlog2(n)e) in O(log n) time and O(n log n) work. Once the value
ci is known for each i, the digits of the sum a + b can be computed in parallel in constant
time; the digit in place value j is the least significant bit of aj + bj + cj.

The algorithm presented above adds n-bit non-negative integers in time O(log n) and
work O(n log n). We leave to the reader the exercise of figuring out how to enhance the
algorithm to allow for signed integers which may be negative.

Integer multiplication. The grade-school algorithm for multiplying two n-bit integers
involves computing n “partial products”, each n bits long, and then summing up the partial
products. If the operands are a =

∑n−1
i=0 ai2

i and b =
∑n−1

j=0 bj2
j, then the jth partial product

is pj =
∑n−1

i=0 aibj2
i+j. The following two facts are clear.

42

1. The digits of all the partial products p0, p1, . . . , pn−1 can be computed in parallel in
constant time and O(n2) work.

2. a · b = p0 + p1 + · · ·+ pn−1.

To finish presenting the multiplication algorithm, we will show how to compute the sum of n
integers, each represented by 2n or fewer binary digits, using a parallel algorithm that runs
in O(log n) time. The key trick is the following lemma.

Lemma 21. There is a parallel algorithm running in O(1) time and O(b) work that reduces
the task of computing the sum of three b-bit binary integers to computing the sum of two
(b+ 1)-bit binary integers.

Proof. Let the three operands be a =
∑n−1

i=0 ai2
i, b =

∑n−1
i=0 bi2

i, and c =
∑n−1

i=0 ci2
i. Define

r =

b(n−1)/2c∑
k=0

(a2k + b2k + c2k)2
2k (21)

s =

b(n−2)/2c∑
k=0

(a2k+1 + b2k+1 + c2k+1)22k+1. (22)

Clearly r + s = a + b + c =
∑n−1

i=0 (ai + bi + ci)2
i. Since the sums a2k + b2k + c2k and

a2k+1+b2k+1+c2k+1 are in the range {0, 1, 2, 3}, when one computes the binary representation
of r using equation (21) the digit ri in place value i depends only on the digits a2k, b2k, c2k

where k = bi/2c, and can be computed in constant time. Similarly when computing the
binary representation of s using equation (22), the digit si in place value i depends only on
the digits a2k+1, b2k+1, c2k+1 where k = b(i− 1)/2c, and si can be computed in constant time
as well. Hence, the digits of r and s can all be computed in parallel using O(n) work and
O(1) time, as claimed.

Applying the lemma recursively, we find that the time T (n, b) and work W (n, b) required
to add n integers, each of length b binary digits, satisfy the recurrences

T (n, b) ≤ T (d2n/3e, b+ 1) +O(1)

W (n, b) ≤ W (d2n/3e, b+ 1) +O(nb)

with base cases T (2, b) = O(log b) and W (2, b) = O(b log b). Solving the recurrences, we find
that T (n, b) = O(log n + log b) = O(log(nb)) and W (n, b) = O(nb + b log b). In particular,
summing up n partial products each composed of 2n or fewer binary digits requires time
O(log n) and work O(n2).

Once again, the extension to signed integer operands is left as an exercise for the reader.

Matrix multiplication. Given two n × n matrices, each of whose entries is an integer
represented using b bits, multiplying them entails computing the inner product of each
row of the first matrix with each column of the second matrix. These inner products are

43

computed in parallel. To compute an inner product, first perform n multiplication operations
in parallel (this takes O(log b) time and O(b2) work for each multiplication, since the operands
have b bits), then sum up the results using the parallel algorithm for summing a list of n
numbers presented above; this takes O(log(nb)) time and O(nb + b log b) work. Hence, the
product of two matrices with b-bit integer entries can be computed in O(log(nb)) time and
O(n3b+ n2b2 + n2b log b) work.

5.5.3 Algebraic branching programs and parallel algorithms

We are working our way up to presenting a parallel algorithm for evaluating the determinant
of a matrix. In this section we introduce a class of computations parameterized by edge-
labeled directed acyclic graphs. The computation encoded by such a graph is called an
algebraic branching program, and our aim in this section is to define algebraic branching
programs and explain how to evaluate them in NC2 by reducing them to iterated matrix
multiplication.

Definition 9. If R is a ring and x1, . . . , xm are formal variables, an algebraic branching
program over R (in the variables x1, . . . , xm) is a directed acyclic graph with two distinguished
nodes s (source) and t (sink), each of whose edges e is labeled with an affine form (i.e., a
degree-1 polynomial) in the variables x1, . . . , xm. If Π is an algebraic branching program
in the variables x1, . . . , xm, with edge labels Π(e), the polynomial fΠ is the multivariate
polynomial

fΠ(x1, . . . , xm) =
∑

P∈P(s,t)

∏
e∈P

Π(e).

Here, the sum is over the set P(s, t) of all paths from s to t in the directed acyclic graph.

The size of an algebraic branching program is the number of vertices in the directed
acyclic graph. Its depth is the maximum number of edges in a path from s to t.

An algebraic branching program Π thereby functions as a succinct encoding of a polyno-
mial fΠ that may have exponentially many monomials, since the cardinality of the path set
P(s, t) is typically exponentially larger than the vertex and edge sets of the graph encoded
by Π.

A convenient observation about algebraic branching programs is that they can be ef-
ficiently evaluated by dynamic programming. If (r1, . . . , rm) is an m-tuple of elements of
R, then the value fΠ(r1, . . . , rm) can be efficiently evaluated as follows. First, number the
vertices of the branching program as v0, v1, . . . , vn−1 such that s = v0, t = vn−1, and every
edge (vi, vj) satisfies i < j. (Such a numbering exists because the graph is acyclic.) Then
let Π〈i〉 denote the algebraic branching program obtained by taking the induced subgraph
on vertex set {v0, . . . , vi} and setting the source and sink to be v0 and vi, respectively.
The dynamic program evaluates fΠ(r1, . . . , rm) by computing the values fΠ〈i〉(r1, . . . , rm) for
i = 0, 1, . . . , n− 1 in sequence. The identity

fΠ〈j〉 =
∑

(vi,vj)∈E

`(vi, vj) · fΠ〈i〉,

44

reflects the fact that every path from s to vj is obtained by appending an edge (vi, vj) to a
path from s to vi. This identity together with the initialization fΠ〈0〉 = 1 specifies how the
dynamic program evaluates fΠ = fΠ〈n−1〉.

Another algorithm to evaluate algebraic branching programs uses iterated matrix mul-
tiplication. This is based on the observation that the (i, j) entry of a matrix product
M1M2 . . .Md is the sum, over all sequences of indices i = i0, i1, . . . , id = j, of the prod-
uct (M1)i0,i1 · (M2)i1,i2 · · · · · · · (Md)id−1,id . Interpreting the sequence of indices as specifying
the vertices of a path in a graph, it is natural to encode an algebraic branching program Π
using a matrix MΠ whose entries are degree-1 polynomials in R[x1, . . . , xm]. The entries of
MΠ are defined as follows:

(MΠ)i,j =


`(vi, vj) if (vi, vj) ∈ E
1 if i = j = n

0 otherwise.

If d denotes the depth of the branching program, then paths in the set P(s, t) are in one-
to-one correspondence with sequences of indices i = i0, i1, . . . , id = j such that the product
(MΠ)i0,i1 · (MΠ)i1,i2 · · · · · · · (MΠ)id−1,id is non-zero. (The correspondence maps a path P to
the index sequence obtained by taking the indices of the vertices in P and padding the end of
sequence with copies of index n, as necessary, until its length is d+1.) Thus, the polynomial
fΠ is equal to the (1, n) entry of (MΠ)d. This gives a recipe for evaluating an algebraic
branching program of size n, on b-bit integer inputs r1, . . . , rm, using a parallel algorithm
that runs in time O(log d · log(nb)) and work poly(n, b). The parallel algorithm computes
the matrix M obtained by substituting r1, . . . , rm for x1, . . . , xm in matrix MΠ. Then it
computes M2,M4,M8, . . . ,M2k , where k = dlog2(d)e, by repeated squaring. Finally, it com-
putes Md by multiplying together a subset of the matrices in the sequence M,M2, . . . ,M2k

(corresponding to the binary digits of d) and outputs the (1, n) entry of Md. We have seen
that each of the matrix multiplications in this algorithm takes O(log(nb)) time and poly(n, b)
work, hence the entire algorithm

5.5.4 An algebraic branching program for the determinant of a matrix

Here, we present a beautiful combinatorial construction due to Mahajan and Vinay that
represents the determinant of an n× n matrix as a polynomial fΠ, where Π is an algebraic
branching program of size O(n3).

A basic observation underlying the construction is that permutations of the set [n] =
{1, 2, . . . , n} can be given a graph-theoretic interpretation in which permutations are in one-
to-one correspondence with “cycle covers” of Kn, the bidirected clique on n vertices with
self-loops. In other words, Kn is the directed graph with vertex set [n] and edge set [n]× [n].
Define a cycle cover of Kn to be a subgraph consisting of vertex-disjoint directed cycles whose
vertex sets constitute a partition of [n]. Equivalently, a cycle cover of Kn is a subgraph in
which every vertex has in-degree 1 and out-degree 1. For every permutation σ ∈ Sn, the
edge set {(i, σ(i)) | 1 ≤ i ≤ n} constitutes a cycle cover of Kn. Conversely, if H is a cycle
cover of Kn, there is a corresponding permutation σ ∈ Sn such that for every i ∈ [n], the

45

edge (i, σ(i)) is the unique edge in H leaving vertex i. Thus, we have defined a bijection
between permutations in Sn and cycle covers of Kn.

Since the determinant of a matrix is a sum of monomials indexed by permutations, it can
be interpreted as a sum over cycle covers of Kn. We now elaborate on this interpretation.
Since the sign of a cyclic permutation on k elements is (−1)k−1, a cycle cover H composed
of c(H) cycles represents a permutation whose sign is (−1)n−c(H). Thus, letting Cn denote
the set of cycle covers of Kn, the determinant of a matrix X = (xij)

n
i,j=1 is expressed by the

following multivariate polynomial of its entries.

det(X) =
∑
H∈Cn

(−1)n−c(H)
∏

(i,j)∈E(H)

xij. (23)

This sum resembles an algebraic branching program, with two exceptions. First, and most
importantly, the sum is over cycle covers rather than paths. Second, each term of the sum
has an extra factor (−1)n−c(H) that does not seem to be associated to any specific edge of
set of edges in H.

To compute the determinant using an algebraic branching program, it would thus be
convenient if we could devise some directed acyclic graph G, with source s and sink t, such
that s-t paths in G are in one-to-one correspondence with cycle covers of Kn. However, this
is probably not possible using a graph of polynomial size. (If it were possible, the same
directed graph could be used to compute the permanent of a matrix in polynomial time.)
Instead, Mahajan and Vinay found a directed acyclic graph whose s-t paths correspond to
combinatorial objects called clow sequences. A cycle cover is a special case of a clow sequence,
and the clow sequences which are not cycle covers cancel each other out when one sums up
their contributions to the algebraic branching program. The sign factor (−1)n−c(H) is vital
in order for this cancellation to occur.

Definition 10. A clow (short for “closed walk”) in Kn is a finite sequence of vertices
i0, i1, . . . , i` such that i0 = i` and ik > i0 for 0 < k < `. The vertex i0 is called the
head of the clow. The number ` is called the length of the clow. If the edges of Kn are
labeled with elements of a ring R, the weight of the clow is the product of the labels of its
edges.

A clow sequence in Kn is a sequence of clows whose heads are numbered in strictly
increasing order, and whose lengths sum up to n. The sign of a clow sequence is (−1)n−k

where k is the number of clows in the sequence. The weight of the clow sequence is calculated
by multiplying its sign by the product of the weights of its constituent clows.

To compute the sum of the weights of all clow sequences, we seek an algebraic branching
program that represents this sum. The vertices of the branching program, apart from the
source s and sink t, will be organized into n layers, with edges linking consecutive layers. A
clow sequence will be mapped to a path in this layout by removing the second occurrence
of the head in each clow (so that a clow of length ` is truncated to a sequence of exactly `
vertices) and then concatenating the truncated clows into a sequence of n vertices, one in
each layer. To ensure that all paths in the layered graph correspond to valid clow sequences,
the vertices in each layer will be identified by ordered pairs (i, h), where index i denotes the

46

vertex currently being visited and index h denotes the head of the clow containing i. The
edge set of the graph are then organized to ensure that the heads of the clows in the sequence
must be numbered in increasing order.

In more detail, the vertices in layer k will be denoted by v[i, h, k], where (i, h, k) ∈ [n]3

and h ≤ i. In layer k = 1, we include only vertices of the form v[h, h, 1], since the first vertex
of a clow is its head. There are edges of weight 1 from s to each of these vertices. In layer
k > 1, a vertex v[j, h, k] with j > h has incoming edges from v[i, h, k − 1] for every i, and
these edges have weight −xij. A vertex v[h, h, k] has incoming edges from v[i, g, k − 1] for
every i and every g < h, and these edges have weight xig. Finally, each vertex v[i, h, n] has
an edge to t of weight xih.

When a clow sequence is translated into a path as described above, a clow of length `
with head h translates to a sequence of ` edges in the path, namely all the edges whose tail is
of the form v[i, h, k]. The product of the weights of those edges is (−1)`−1 times the weight
of the clow. Hence, the product of the weights of all edges in the path is equal to the weight
of the clow sequence.

To sum up, the algebraic branching program Π described above has size O(n3), depth
n+1, and fΠ is equal to the sum of the weights of all clow sequences in Kn. The cycle covers
of Kn correspond to the subset of clow sequences in which each vertex occurs exactly once
(provided that the head of a clow is considered to occur once, not twice, in that clow). The
sum of the weights of the clow sequences that correspond to cycle covers is the determinant
polynomial, det(X). To finish showing that fΠ = det(X), we will show how to group all the
remaining clow sequences into pairs whose weights sum to zero.

If C1, C2, . . . , Ck is a clow sequence that does not correspond to a cycle cover, then there
must be at least one vertex that occurs more than once among all the clows in the sequence.
Let i be the largest index such that there is a vertex occurring more than once among the
clows Ci, Ci+1, . . . , Ck. Going through the vertices of Ci in sequence, let us stop at the earliest
vertex j in the sequence that satisfies one of the following two conditions.

1. vertex j completes a simple cycle in Ci;

2. vertex j belongs to one of the higher-numbered clows, Ci+1, . . . , Ck.

Note that j cannot satisfy both conditions simultaneously: if it did, then it would also occur
earlier in Ci (at the start of the simple cycle which finishes at the current occurrence of j) and
its earlier occurrence in Ci would also satisfy the second condition. Hence, exactly one of the
two conditions is satisfied. If j satisfies the first condition, then we pair the clow sequence
C1, . . . , Ck with a modified clow sequence obtained as follows. Let C denote the subsequence
of Ci beginning and ending with the first and second occurrences of j. Modify Ci to C ′i by
extracting C and replacing it with a single occurrence of j. Take the simple cycle C and
insert it into the clow sequence as a new clow (whose head is the lowest-numbered vertex
of the simple cycle). In this way, the clow sequence C1, . . . , Ck is modified to a new clow
sequence with the same multiset of edges but one additional clow. If j satisfies the second
condition, we pair it with a clow sequence constructed by the reverse operation: we take the
clow that contains j and is numbered higher than i (there must be a unique such clow, since
Ci+1, . . . , Ck are presumed to be vertex-disjoint) and we merge it into Ci by replacing the

47

first occurrence of j in Ci with a simple cycle that starts and ends at j and contains all of
the edges of the higher-numbered clow that is being merged into Ci. In this way, we pair all
clow sequences that are not cycle covers, in such a way that the two members of each pair
have the same multiset of edges, but their weights are oppositely signed and hence their net
contribution to the total weight is zero.

We have shown that the n × n determinant polynomial det(X) can be represented as
an algebraic branching program of size O(n3) and depth n + 1. Consequently there is a
parallel algorithm to compute the determinant that runs in time O(log n · log(nb)). Since
the input size is nb, this running time is (up to constant factors) bounded by the square of
the logarithm of the input size, so the determinant is in NC2.

5.5.5 A randomized parallel algorithm to find a perfect matching

Combining the NC2 algorithm for the determinant with Lovász’s idea of substituting random
numbers for the variables {xij}, we immediately obtain a randomized NC2 algorithm to test
whether a bipartite graph has a perfect matching. However, we can go further and use one
additional trick to actually compute the edge set of a perfect matching, if one exists, in
randomized NC2. This algorithm is due to Mulmuley, Vazirani, and Vazirani.

The algorithm first assigns random weights to the edges ofG using independent uniformly-
distributed integers in the range {0, 1, . . . , b−1} where b = O(poly(n)). A key lemma known
as the Isolation Lemma, which we prove below, shows that with probability at least 1− m

b
,

there is a unique minimum-weight matching. The second key idea in the algorithm is to use
matrix determinants to identify the edge set of the minimum-weight matching, when it is
unique.

Lemma 22. Suppose F is a family of subsets of {1, 2, . . . ,m} and w1, . . . , wm are mutually
independent random variables taking values in the real numbers. Define the weight of each
set in F to be the sum of the weights of its elements. Let δ be the maximum, over all i ∈ [m]
and x ∈ R, of the probability that wi = x. With probability at least 1 − mδ the minimum
weight set in F is unique.

Proof. Let us say that an element i ∈ {1, 2, . . . ,m} is confused if the minimum weight of a set
in F containing i equals the minimum weight of a set in F not containing i. The minimum
weight set is non-unique if and only if there exists at least one confused element, so the
probability that the minimum weight set is non-unique is bounded above by the expected
number of confused elements.

To bound the probability that element i is confused, we condition on the weights of all
other elements besides i, and we show that the conditional probability that i is confused
can never exceed δ. Indeed, once we have conditioned on the weights of all other elements,
the minimum weight of a set in F not containing i is determined; call this weight W0.
Furthermore, the set of elements of a minimum-weight set set in F containing i is also
determined; call this weight W1+wi, where W1 represents the combined weight of all elements
other than i in this minimum-weight set. Then element i is confused if and only if wi =
W0 −W1, an event with probability at most δ.

48

Summing up over all elements i ∈ [m], we find that the expected number of confused
elements is at most mδ, so the probability that there are no confused elements (and that the
minimum-weight set is unique) is at least 1−mδ.

Now, we show how to reduce the problem of finding a unique minimum-weight perfect
matching (if one exists) to computing m+1 matrix determinants in parallel. Sample weights
w(i, j) independently and uniformly at random from {0, 1, . . . , b − 1} for each edge (ui, vj)
of G. Consider the matrix A defined by setting Aij = 2w(i,j) if (ui, vj) ∈ E and Aij = 0
otherwise. The determinant of A is a sum, over all perfect matchings M , of ±2w(M), where
w(M) denotes the sum of the weights of all edges in M . If M∗ is the unique minimum-weight
perfect matching and its weight is W , then the contribution of M∗ to the determinant is
congruent to 2W modulo 2W+1, and the contribution of every other perfect matching is
divisible by 2W+1.

Now, let e = (ui, vj) be any edge of G, and let A−ij denote the matrix obtained from
A by deleting row i and column j. The determinant of A−ij is the sum, over all perfect
matchings M in G that contain e, of ±2w(M)−w(i,j). Hence, 2w(i,j) · det(A−ij) is congruent to
2W modulo 2W+1 if e belongs to M∗, and otherwise 2w(i,j) · det(A−ij) is divisible by 2W+1.

It is now clear how to design a parallel algorithm to find the edge set of a minimum-weight
perfect matching, when there is a unique such matching. In parallel for each of the m + 1
matrices in the set {A}∪{Aij | (ui, vj) ∈ E}, the algorithm computes the determinant of the
matrix, and then it computes the largest power of 2 dividing the determinant. It outputs
the set of all edges (ui, vj) such that the largest power of 2 dividing det(A−ij) equals the
largest power of 2 dividing det(A). It is an easy exercise to design a parallel algorithm that
computes the largest power of 2 dividing a d-bit binary number in O(log d) time. Given the
way we defined A, the determinant of each matrix our algorithm handles can be expressed
in d binary digits where d ≤ O(n log n+ nb), so log d = O(log(nb)).

We have presented a randomized parallel algorithm for finding a perfect matching in a
bipartite graph that runs in time O(log(n) log(nb)) and succeeds with probability 1−m/b.
Letting b = mc+1 for any constant c, we obtain an algorithm with running time O((c +
1) log2(n)) and success probability 1− 1/mc.

49

	Bipartite maximum matching
	Definitions
	Alternating paths and cycles; augmenting paths
	Bipartite maximum matching: Naïve algorithm
	The Hopcroft-Karp algorithm
	Computing a blocking set of augmenting paths
	The Hopcroft-Karp Algorithm and its Analysis

	Non-bipartite matching
	Bipartite min-cost perfect matching
	Iterative min-cost augmenting paths
	LP relaxation
	Primal-dual algorithm

	Online matching
	A lower bound
	The greedy algorithm
	Online fractional matching: the waterfilling algorithm
	The waterfilling algorithm is optimal
	Randomized online matching: The ranking algorithm

	Algebraic Algorithms for Matching Problems
	Permanents, determinants, and graph matchings
	Lovász's algorithm for perfect matching detection
	Fast algorithms for matrix inversion
	Digression: detecting cliques using fast matrix multiplication
	Parallel algorithms for finding perfect matchings
	Overview of parallel complexity theory
	Parallel algorithms for addition and multiplication
	Algebraic branching programs and parallel algorithms
	An algebraic branching program for the determinant of a matrix
	A randomized parallel algorithm to find a perfect matching

