
Cornell University, Fall 2024 CS 6820: Algorithms
Lecture notes on approximation algorithms

1 Introduction: Approximation Algorithms

For many important optimization problems, there is no known polynomial-time algorithm to
compute the exact optimum. In fact, when we discuss the topic of NP-completeness later in the
semester, we’ll see that a great many such problems are all equivalently hard to solve, in the
sense that the existence of a polynomial-time algorithm for solving any one of them would imply
polynomial-time algorithms for all the rest.

The study of approximation algorithms arose as a way to circumvent the apparent hardness of
these problems by relaxing the algorithm designer’s goal: instead of trying to compute an exactly
optimal solution, we aim to compute a solution whose value is as close as possible to that of the
optimal solution. However, in some situations it is desirable to run an approximation algorithm
even when there exists a polynomial-time algorithm for computing an exactly optimal solution.
For example, the approximation algorithm may have the benefit of faster running time, a lower
space requirement, or it may lend itself more easily to a parallel or distributed implementation.
These considerations become especially important when computing on “big data,” where the
input size is so astronomical that a running time which is a high-degree polynomial of the input
size (or even quadratic, for that matter) cannot really be considered an efficient algorithm, at
least on present-day hardware.

To make the definition of approximation algorithms precise, we say that an algorithm ALG
for a maximization problem is an α-approximation algorithm (or that its approximation factor
is α) if the following inequality holds for every input instance x:

ALG(x) ≤ OPT(x) ≤ α · ALG(x).

Here OPT(x) denotes the value of the problem’s objective function when evaluated on the op-
timal solution to input instance x, and ALG(x) denotes the algorithm’s output when it runs
on input instance x. Note that the definition only requires the algorithm to output a number
(approximating the value of the optimal solution) and not the approximate solution itself. In
most cases, it is possible to design the algorithm so that it also outputs a solution attaining the
value ALG(x), but in these notes we adopt a definition of approximation algorithm that does
not require the algorithm to do so.

Similarly, for a minimization problem, an α-approximation algorithm must satisfy

OPT(x) ≤ ALG(x) ≤ α ·OPT(x).

Note that in both cases the approximation factor α is a number greater than or equal to 1.

2 Approximation Algorithms Based on Linear Program-

ming

Linear programming is an extremely versatile technique for designing approximation algorithms,
because it is one of the most general and expressive problems that we know how to solve in
polynomial time. In this section we’ll discuss three applications of linear programming to the
design and analysis of approximation algorithms.

2.1 LP Rounding Algorithm for Weighted Vertex Cover

In an undirected graph G = (V,E), if S ⊆ V is a set of vertices and e is an edge, we say that S
covers e if at least one endpoint of e belongs to S. We say that S is a vertex cover if it covers
every edge. In the weighted vertex cover problem, one is given an undirected graph G = (V,E)
and a weight wv ≥ 0 for each vertex v, and one must find a vertex cover of minimum combined
weight.

We can express the weighted vertex cover problem as an integer program, by using decision
variables xv for all v ∈ V that encode whether v ∈ S. For any set S ⊆ V we can define a vector
x, with components indexed by vertices of G, by specifying that

xv =

{
1 if v ∈ S
0 otherwise.

S is a vertex cover if and only if the constraint xu + xv ≥ 1 is satisfied for every edge e = (u, v).
Conversely, if x ∈ {0, 1}V satisfies xu + xv ≥ 1 for every edge e = (u, v) then the set S = {v |
xv = 1} is a vertex cover. Thus, the weighted vertex cover problem can be expressed as the
following integer program.

min
∑

v∈V wvxv

s.t. xu + xv ≥ 1 ∀e = (u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V

(1)

To design an approximation algorithm for weighted vertex cover, we will transform this integer
program into a linear program by relaxing the constraint xv ∈ {0, 1} to allow the variables xv to
take fractional values.

min
∑

v∈V wvxv

s.t. xu + xv ≥ 1 ∀e = (u, v) ∈ E

xv ≥ 0 ∀v ∈ V

(2)

It may seem more natural to replace the constraint xv ∈ {0, 1} with xv ∈ [0, 1] rather than
xv ≥ 0, but the point is that an optimal solution of the linear program will never assign any of
the variables xv a value strictly greater than 1, because the value of any such variable could always
be reduced to 1 without violating any constraints, and this would only improve the objective
function

∑
v wvxv. Thus, writing the constraint as xv ≥ 0 rather than xv ∈ [0, 1] is without loss

of generality.
It is instructive to present an example of a fractional solution of (2) that achieves a strictly

lower weight than any integer solution. One such example is when G is a 3-cycle with vertices
u, v, w, each having weight 1. Then the vector x =

(
1
2
, 1
2
, 1
2

)
satisfies all of the constraints of (2)

and the objective function evaluates to 3
2

at x. In contrast, the minimum weight of a vertex
cover of the 3-cycle is 2.

We can solve the linear program (2) in polynomial time, but as we have just seen, the
solution may be fractional. In that case, we need to figure out how we are going to post-process
the fractional solution to obtain an actual vertex cover. In this case, the natural idea of rounding
to the nearest integer works. Let x be an optimal solution of the linear program (2) and define

x̃v =

{
1 if xv ≥ 1/2

0 otherwise.
(3)

Now let S = {v | x̃v = 1}. Note that S is a vertex cover because for every edge e = (u, v) the
constraint xu + xv ≥ 1 implies that at least one of xu, xv is greater than or equal to 1/2.

Finally, the analyze the approximation ratio of this algorithm, we observe that the rounding
rule (3) has the property that for all v,

x̃v ≤ 2xv.

Letting S denote the vertex cover chosen by our LP rounding algorithm, and letting OPT denote
the optimum vertex cover, we have∑

v∈S

wv =
∑
v∈V

wvx̃v ≤ 2
∑
v∈V

wvxv ≤ 2
∑

v∈OPT

wv,

where the final inequality holds because the fractional optimum of the linear program (2) must
be less than or equal to the optimum of the integer program (1) because its feasible region is at
least as big.

2.2 Primal-Dual Algorithm for Weighted Vertex Cover

The algorithm presented in the preceding section runs in polynomial time, and we have seen that
it outputs a vertex cover whose weight is at most twice the weight of the optimum vertex cover,
a fact that we express by saying that its approximation factor is 2.

However, the algorithm needs to solve a linear program and although this can be done in
polynomial time, there are much faster ways to compute a vertex cover with approximation
factor 2 without solving the linear program. One such algorithm, that we present in this section,
is a primal-dual approximation algorithm, meaning that it makes choices guided by the linear
program (2) and its dual but does not actually solve them to optimality.

Let us write the linear programming relaxation of weighted vertex cover once again, along
with its dual.

min
∑

v∈V wvxv

s.t. xu + xv ≥ 1 ∀e = (u, v) ∈ E

xv ≥ 0 ∀v ∈ V

(4)

max
∑

e∈E ye

s.t.
∑

e∈δ(v) ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

(5)

Here, the notation δ(v) denotes the set of all edges having v as an endpoint. One may interpret
the dual LP variable ye as prices associated to the edges, and one may interpret wv as the wealth
of vertex v. The dual constraint

∑
e∈δ(v) ye ≤ wv asserts that v has enough wealth to pay for

all of the edges incident to it. If edge prices satisfy all the constraints of (5) then every vertex
has enough wealth to pay for its incident edges, and consequently every vertex set S has enough
combined wealth to pay for all of the edges covered by S. In particular, if S is a vertex cover
then the combined wealth of the vertices in S must be at least

∑
e∈E ye, which is a manifestation

of weak duality : the optimum value of the dual LP is a lower bound on the optimum value of
the primal LP.

The dual LP insists that we maximize the combined price of all edges, subject to the con-
straint that each vertex has enough wealth to pay for all the edges it covers. Rather than exactly
maximizing the combined price of all edges, we will set edge prices using a natural (but subopti-
mal) greedy heuristic: go through the edges in arbitrary order, increasing the price of each one as
much as possible without violating the dual constraints. This results in the following algorithm.

Algorithm 1 Primal-dual algorithm for vertex cover

1: Initialize S = ∅, ye = 0 ∀e ∈ E, sv = 0 ∀v ∈ V .
2: for all e ∈ E do
3: δ = min{wu − su, wv − sv}
4: ye = ye + δ
5: su = su + δ
6: sv = sv + δ
7: if su = wu then
8: S = S ∪ {u}
9: end if
10: if sv = wv then
11: S = S ∪ {v}
12: end if
13: end for
14: return S

The variables sv keep track of the sum
∑

e∈δ(v) ye (i.e., the left-hand side of the dual constraint

corresponding to vertex v) as it grows during the execution of the algorithm. The rule for updat-
ing S by inserting each vertex v such that sv = wv is inspired by the principle of complementary
slackness from the theory of linear programming duality: if x∗ is an optimal solution of a primal
linear program and y∗ is an optimal solution of the dual, then for every i such that x∗i 6= 0 the
ith dual constraint must be satisfied with equality by y∗; similarly, for every j such that y∗j 6= 0,
the jth primal constraint is satisfied with equality by x∗. Thus, it is natural that our decisions
of which vertices to include in our vertex cover (primal solution) should be guided by keeping
track of which dual constraints are tight (sv = wv).

It is clear that each iteration of the main loop runs in constant time, so the algorithm runs
in linear time. At the end of the loop processing edge e = (u, v), at least one of the vertices u, v
must belong to S. Therefore, S is a vertex cover. To conclude the analysis we need to prove that
the approximation factor is 2. To do so, we note the following loop invariants — statements that
hold at the beginning and end of each execution of the for loop, though not necessarily in the
middle. Each of them is easily proven by induction on the number of iterations of the for loop.

1. y is a feasible vector for the dual linear program.

2. sv =
∑

e∈δ(v) ye.

3. S = {v | sv = wv}.

4.
∑

v∈V sv = 2
∑

e∈E ye.

Now the proof of the approximation factor is easy. Recalling that
∑

e∈E ye ≤
∑

v∈OPTwv by
weak duality, we find that∑

v∈S

wv =
∑
v∈S

sv ≤
∑
v∈V

sv = 2
∑
e∈E

ye ≤ 2
∑

v∈OPT

wv.

2.3 Greedy Algorithm for Weighted Set Cover

Vertex cover is a special case of the set cover problem, in which there is a set U of n elements,
and there are m subsets S1, . . . , Sm ⊆ U , with positive weights w1, . . . , wm. The goal is to
choose a subcollection of the m subsets (indexed by an index set I ⊆ {1, . . . ,m}), such that⋃
i∈I Si = U , and to minimize the combined weight

∑
i∈I wi. We will analyze the following

natural greedy algorithm that chooses sets according to a “minimum weight per new element
covered” criterion. (The variable T in the pseudocode below keeps track of the set of elements
that are not yet covered by

⋃
i∈I Si.)

Algorithm 2 Greedy algorithm for set cover

1: Initialize I = ∅, T = U .
2: while T 6= ∅ do

3: i = arg mink

{
wk

|T∩Sk|

∣∣∣ 1 ≤ k ≤ m, T ∩ Sk 6= ∅
}

.

4: I = I ∪ {i}.
5: T = T \ Si.
6: end while
7: return I

It is clear that the algorithm runs in polynomial time and outputs a valid set cover. To
analyze the approximation ratio, we will use the linear programming relaxation of set cover and
its dual.

min
∑m

i=1wixi

s.t.
∑

i:j∈Si
xi ≥ 1 ∀j ∈ U

xi ≥ 0 ∀i = 1, . . . ,m

(6)

max
∑

j∈U yj

s.t.
∑

j∈Si
yj ≤ wi ∀i = 1, . . . ,m

yj ≥ 0 ∀j ∈ U

(7)

It will be helpful to rewrite the greedy set cover algorithm by adding some extra lines that do
not influence the choice of which sets to place in I , but merely compute extra data relevant
to the analysis. Specifically, in the course of choosing sets to include in I , we also compute a
vector z indexed by elements of U . This is not a feasible solution of the dual LP, but at the end
of the algorithm we scale it down to obtain another vector y that is feasible for the dual LP.
The scale factor α will constitute an upper bound on the algorithm’s approximation ratio. This
is called the method of dual fitting.

Algorithm 3 Greedy algorithm for set cover

1: Initialize I = ∅, T = U, zj = 0 ∀j ∈ U .
2: while T 6= ∅ do

3: i = arg mink

{
wk

|T∩Sk|

∣∣∣ 1 ≤ k ≤ m, T ∩ Sk 6= ∅
}

.

4: I = I ∪ {i}.
5: for all j ∈ T ∩ Si do
6: zj = wi

|T∩Si| .
7: end for
8: T = T \ Si.
9: end while
10: α = 1 + ln (max1≤i≤m |Si|).
11: y = 1

α
z.

12: return I

The following three loop invariants are easily shown to hold at the beginning and end of each
while loop iteration, by induction on the number of iterations.

1.
∑

j∈U zj =
∑

i∈I wi.

2. For all j ∈ U , if the algorithm ever assigns a nonzero value to zj then that value never
changes afterward.

Below, in Lemma 1, we will show that the vector y is feasible for the dual LP (7). From this,
it follows that the approximation ratio is bounded above by α = 1 + ln (max1≤i≤m |Si|) . To see
this, observe that ∑

i∈I

wi =
∑
j∈U

zj = α
∑
j∈U

yj ≤ α
∑
i∈OPT

wi,

where the last line follows from weak duality.

Lemma 1. The vector y computed in Algorithm (3) is feasible for the dual linear program (7).

Proof. Clearly yj ≥ 0 for all j, so the only thing we really need to show is that
∑

j∈Si
yj ≤ wi for

every set Si. Let p = |Si| and denote the elements of Si by s0, s1, . . . , sp−1, where the numbering
corresponds to the order in which nonzero values were assigned to the variables zj by Algorithm 3.
Thus, a nonzero value was assigned to zs0 before zs1 , and so on. We know that

zs0 ≤
wi
p

(8)

because at the time the value zs0 was assigned, all of the elements of Si still belonged to T . In
that iteration of the while loop, the cost-effectiveness of Si was judged to be wi/p, the algorithm
chose a set with the same or better cost-effectiveness, and all of the values zj assigned during
that iteration of the while loop were set equal to the cost-effectiveness of that set. Similarly, we
know that for all q < p,

zsq ≤
wi
p− q

(9)

because at the time the value zsq was assigned, all of the elements sq, sq+1, . . . , sp−1 still belonged
to T . In that iteration of the while loop, the cost-effectiveness of Si was judged to be wi/(p− q)
or smaller, the algorithm chose a set with the same or better cost-effectiveness, and all of the

values zj assigned during that iteration of the while loop were set equal to the cost-effectiveness
of that set.

Summing the bounds (9) for q = 0, . . . , p− 1, we find that∑
j∈Si

zj ≤ wi ·
(

1

p
+

1

p− 1
+ · · ·+ 1

2
+ 1

)
< wi ·

(
1 +

∫ p

1

dt

t

)
= wi · (1 + ln p) .

The lemma follows upon dividing both sides by α.

3 Randomized Approximation Algorithms

Randomized techniques give rise to some of the simplest and most elegant approximation algo-
rithms. This section gives several examples.

3.1 A Randomized 2-Approximation for Max-Cut

In the max-cut problem, one is given an undirected graph G = (V,E) and a positive weight we
for each edge, and one must output a partition of V into two subsets A,B so as to maximize the
combined weight of the edges having one endpoint in A and the other in B.

We will analyze the following extremely simple randomized algorithm: assign each vertex at
random to A to B with equal probability, such that the random decisions for the different vertices
are mutually independent. Let E(A,B) denote the (random) set of edges with one endpoint in
A and the other endpoint in B. The expected weight of our cut is

E

 ∑
e∈E(A,B)

we

 =
∑
e∈E

we · Pr(e ∈ E(A,B)) =
1

2

∑
e∈E

we.

Since the combined weight of all edges in the graph is an obvious upper bound on the weight of
any cut, this shows that the expected weight of the cut produced by our algorithm is at least
half the weight of the maximum cut.

3.1.1 Derandomization using pairwise independent hashing

In analyzing the expected weight of the cut defined by our randomized algorithm, we never
really used the full power of our assumption that the random decisions for the different vertices
are mutually independent. The only property we needed was that for each pair of vertices u, v,
the probability that u and v make different decisions is exactly 1

2
. It turns out that one can

achieve this property using only k = dlog2(n)e independent random coin tosses, rather than n
independent random coin tosses.

Let F2 denote the field {0, 1} under the operations of addition and multiplication modulo 2.
Assign to each vertex v a distinct vector x(v) in the vector space Fk2; our choice of k = dlog2(n)e
ensures that the vector space contains enough elements to assign a distinct one to each vertex.
Now let r be a uniformly random vector in Fk2, and partition the vertex set V into the subsets

Ar = {v | r · x(v) = 0}
Br = {v | r · x(v) = 1}.

For any edge e = (u, v), the probability that e ∈ E(Ar, Br) is equal to the probability that
r · (x(v)− x(u)) is nonzero. For any fixed nonzero vector w ∈ Fk2, we have Pr(r · w 6= 0) = 1

2

because the set of r satisfying r · w = 0 is a linear subspace of Fk2 of dimension k − 1, hence
exactly 2k−1 of the 2k possible vectors r have zero dot product with w and the other 2k−1 of
them have nonzero dot product with w. Thus, if we sample r ∈ Fk2 uniformly at random, the
expected weight of the cut defined by (Ar, Br) is at least half the weight of the maximum cut.

The vector space Fk2 has only 2k = O(n) vectors in it, which suggests a deterministic alter-
native to our randomized algorithm. Instead of choosing r at random, we compute the weight
of the cut (Ar, Br) for every r ∈ Fk2 and take the one with maximum weight. This is at least as
good as choosing r at random, so we get a deterministic 2-approximation algorithm at the cost
of increasing the running time by a factor of O(n).

3.1.2 Derandomization using conditional expectations

A different approach for converting randomization approximation algorithms into deterministic
ones is the method of conditional expectations. In this technique, rather than making all of
our random decisions simultaneously, we make them sequentially. Then, instead of making the
decisions by choosing randomly between two alternatives, we evaluate both alternatives according
to the conditional expectation of the objective function if we fix the decision (and all preceding
ones) but make the remaining ones at random. Then we choose the alternative that optimizes
this conditional expectation.

To apply this technique to the randomized max-cut algorithm, we imagine maintaining a
partition of the vertex set into three sets A,B,C while the algorithm is running. Sets A,B are
the two pieces of the partition we are constructing. Set C contains all the vertices that have
not yet been assigned. Initially C = V and A = B = ∅. When the algorithm terminates C will
be empty. At an intermediate stage when we have constructed a partial partition (A,B) but C
contains some unassigned vertices, we can imagine assigning each element of C randomly to A
or B with equal probability, independently of the other elements of C. If we were to do this, the
expected weight of the random cut produced by this procedure would be

w(A,B,C) =
∑

e∈E(A,B)

we +
1

2

∑
e∈E(A,C)

we +
1

2

∑
e∈E(B,C)

we +
1

2

∑
e∈E(C,C)

we.

This suggests the following deterministic algorithm that considers vertices one by one, assigning
them to either A or B using the function w(A,B,C) to guide its decisions.

Algorithm 4 Derandomized max-cut algorithm using method of conditional expectations

1: Initialize A = B = ∅, C = V .
2: for all v ∈ V do
3: Compute w(A+ v,B,C − v) and w(A,B + v, C − v).
4: if w(A+ v,B,C − v) > w(A,B + v, C − v) then
5: A = A+ v
6: else
7: B = B + v
8: end if
9: C = C − v
10: end for
11: return A,B

The analysis of the algorithm is based on the simple observation that for every partition of
V into three sets A,B,C and every v ∈ C, we have

1

2
w(A+ v,B,C − v) +

1

2
w(A,B + v, C − v) = w(A,B,C).

Consequently

max{w(A+ v,B,C − v), w(A,B + v, C − v)} ≥ w(A,B,C)

so the value of w(A,B,C) never decreases during the execution of the algorithm. Initially the
value of w(A,B,C) is equal to 1

2

∑
e∈E we, whereas when the algorithm terminates the value

of w(A,B,C) is equal to
∑

e∈E(A,B)we. We have thus proven that the algorithm computes a

partition (A,B) such that the weight of the cut is at least half the combined weight of all edges
in the graph.

Before concluding our discussion of this algorithm, it’s worth noting that the algorithm can
be simplified by observing that

w(A+ v,B,C − v)− w(A,B + v, C − v) =
1

2

∑
e∈E(B,v)

we −
1

2

∑
e∈E(A,v)

we.

The algorithm runs faster if we skip the step of actually computing w(A+ v,B,C− v) and jump
straight to computing their difference. This also means that there’s no need to explicitly keep
track of the vertex set C.

Algorithm 5 Derandomized max-cut algorithm using method of conditional expectations

1: Initialize A = B = ∅.
2: for all v ∈ V do
3: if

∑
e∈E(B,v)we −

∑
e∈E(A,v)we > 0 then

4: A = A+ v
5: else
6: B = B + v
7: end if
8: end for
9: return A,B

This version of the algorithm runs in linear time: the amount of time spent on the loop
iteration that processes vertex v is proportional to the length of the adjacency list of that vertex.
It’s also easy to prove that the algorithm has approximation factor 2 without resorting to any
discussion of random variables and their conditional expectations. One simply observes that the
property ∑

e∈E(A,B)

we ≥
∑

e∈E(A,A)

we +
∑

e∈E(B,B)

we

is a loop invariant of the algorithm. The fact that this property holds at termination implies
that

∑
e∈E(A,B)we ≥

1
2

∑
e∈E we and hence the algorithm’s approximation factor is 2.

3.1.3 Semidefinite programming and the Goemans-Williamson algorithm

So far, in our discussion of max-cut, we have made no mention of linear programming. It’s worth
considering for a moment the question of whether the natural linear programming relaxation of
the max-cut problem can achieve an approximation factor better than 2. It’s actually not so easy
to write down the natural linear programming relaxation of max-cut. We can define decision
variables {xv | v ∈ V }, taking values in [0, 1], with the intended semantics that xv = 0 if v ∈ A
and xv = 1 if v ∈ B. The trouble is that the natural way to write the objective function is∑

e∈E |xu − xv|, which is not a linear function because the absolute value function is non-linear.
A workaround is to define a variable ye for each edge e, with the intended semantics that ye = 1
if e crosses the cut (A,B) and otherwise ye = 0. This suggests the following linear programming
relaxation of max-cut.

max
∑

e∈E ye

s.t. ye ≤ xu + xv ∀e = (u, v) ∈ E

ye ≤ (1− xu) + (1− xv) ∀e = (u, v) ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V

(10)

As noted earlier, for every partition of V into two sets A,B we can set xv = 0 if v ∈ A, xv = 1
if v ∈ B, and ye = 1 if and only if e crosses the cut (A,B); this yields a valid integer solution
of the linear program (10) such that the LP objective value equals the number of edges crossing
the cut.

Unfortunately, for every graph the linear program (10) also has a fractional solution whose
objective value equals m, the number of edges in the graph. Namely, setting xv = 1

2
for all v

and ye = 1 for all e satisfies the constraints of the linear program and achieves the objective
value m. Since there exists graphs whose maximum cut contains barely more than half the
edges (e.g., a complete graph on n vertices), solving this LP relaxation of max-cut only yields
a 2-approximation, the same approximation factor achieved by the much simpler algorithms
presented above.

For many years, it was not known whether any polynomial-time approximation algorithm
for max-cut could achieve an approximation factor better than 2. Then in 1994, Michel Goe-
mans and David Williamson discovered an algorithm with approximation factor roughly 1.14,
based on semidefinite programming (SDP). Since then, SDP has found an increasing number
of applications algorithm design, not only in approximation algorithms (where SDP has many
other applications besides max-cut), but also in machine learning and high-dimensional statistics,
coding theory, and other areas.

So what is semidefinite programming? An SDP is an optimization problem that seeks the
maximum of a linear function over the set of symmetric positive semidefinite n × n matrices,
subject to linear inequality constraints. See Lemma 2 below for the definition and some ba-
sic properties of symmetric positive semidefinite matrices. For now, we limit ourselves to the
following remarks motivating why semidefinite programming is a powerful tool.

1. Semidefinite programming is solvable (to any desired precision) in polynomial time. The
solution may contain irrational numbers, even if the input is made up exclusively of rational
numbers, which is why the parenthetical remark about “to any desired precision” was
necessary.

2. One of the main themes of algorithm design is, “When you have a discrete optimization
problem that you don’t know how to solve, formulate a related continuous optimization
problem that you do know how to solve, and then try to figure out how to transform a
solution of the continuous problem into a solution (either exact or approximate) or the
original discrete problem. An obvious consequence of this theme is: any time someone
discovers a continuous optimization problem that can be solved by an efficient algorithm,
that’s a potential opportunity to design better algorithms for discrete optimization problems
too. This remark alone could justify the importance of SDP’s in algorithm design.

3. Any linear program can be reformulated as a semidefinite program, by optimizing over the
set of diagonal positive semidefinite matrices. Thus, SDP is at least as powerful as LP.

4. Often, one thinks of LP as relaxing a discrete optimization problem by allowing {0, 1}-
valued quantities to take continuous (scalar) values. In the same spirit, SDP can be thought
of as further relaxing the problem by allowing scalar quantities to take (potentially high-
dimensional) vector values.

To define semidefinite programming, we start with a lemma about real symmetric matrices.
Any matrix satisfying the equivalent conditions listed in the lemma is called a symmetric positive
semidefinite (PSD) matrix. The notation A � 0 denotes the fact that A is PSD.

Lemma 2. For a real symmetric matrix A, the following properties are equivalent.

1. Every eigenvalue of A is non-negative.

2. A can be expressed as a weighted sum of the form

A =
m∑
i=1

ciyiy
T
i (11)

where the coefficients ci are non-negative.

3. A = XXT for some matrix X.

4. There exists a vector space containing vectors x1, . . . ,xn such that A is the matrix of dot
products of these vectors, i.e. for 1 ≤ i, j ≤ n, the dot product xi · xj occurs in the ith row
and jth column of A.

5. For every vector z, A satisfies the inequality zTAz ≥ 0.

Proof. To prove that the first property implies the second, we use the fact that every real sym-
metric matrix is orthogonally diagonalizable, i.e. that A can be written in the form A = QDQT

where Q is an orthogonal matrix and D is a diagonal matrix whose entries are the eigenvalues of
A. Defining ci to be the ith diagonal entry of D, and yi to be the ith column of Q, the equation
A = QDQT expands as A =

∑n
i=1 ciyiy

T
i , as desired.

It is elementary to prove that (2) → (3) → (5) → (1), as follows. If A is represented by a
weighted sum as in (11), then A = XXT where X is a matrix with k columns whose ith column
is
√
ci · yi. If A = XXT, then for every z we have zTAz = (zTX)(XTz) = ‖XTz‖2 ≥ 0. If the

inequality zTAz ≥ 0 is satisfied for every vector z, then in particular it is satisfied whenever z is
an eigenvector of A with eigenvalue λ. This implies that 0 ≤ zTAz = zT(λz) = λ‖z‖2 and hence
that λ ≥ 0. Having proven that (1)→ (2) in the preceding paragraph, we may now conclude that

all properties except possibly the fourth are equivalent. Finally, observe that the fourth property
is simply a restatement of the third, adopting the notation xi to denote the vector representing
the ith row of X. Thus, (3) and (4) are trivially equivalent.

To begin relating the max-cut problem to a semidefinite program, it begins to reformulate
max-cut as a problem about labeling vertices of a graph with {±1} rather than {0, 1}. Encoding
cuts in that way, we can write max-cut as the following quadratic optimization problem.

max 1
2

∑
e=(u,v)∈E(1− xuxv)

s.t. x2v = 1 ∀v ∈ V
(12)

The next step in transforming this into a semidefinite program is to treat the variables xv as
vectors rather than scalars. We’ll change the notation to xv to reflect this shift.

max 1
2

∑
e=(u,v)∈E(1− xu · xv)

s.t. ‖xv‖2 = 1 ∀v ∈ V
(13)

For every {±1} solution of (12) there is a corresponding solution of (13) in which the vectors
{xv | v ∈ V } are all equal to ±w for some fixed unit vector w. On the other hand, there are
also solutions of (13) that do not correspond to any {±1} solution of (12), so (13) is a relaxation
of (12) and an optimal solution of (13) might be able to achieve a strictly higher objective value
than the size of the maximum cut in the graph G.

Using Lemma 2 we know that (13) is equivalent to solving the following semidefinite program
to optimize over PSD matrices A = (auv) whose entries are indexed by ordered pairs of vertices
of G.

max 1
2

∑
e=(u,v)∈E 1− auv

s.t. avv = 1 ∀v ∈ V

A � 0

(14)

Furthermore, given the matrix A that solves (14), we can obtain, in polynomial time, a matrix
X such that A = XXT. (This is tantamount to computing the eigenvalues and eigenvectors of
A. It would be more accurate to say that we can compute X to arbitrary precision in polynomial
time.) The rows of this X constitute the vectors xv representing a solution of (13).

The question now arises: given the vectors {xv}, how do we output a cut in G such that
the number of edges in the cut is approximately as large as 1

2

∑
(1 − xu · xv)? The idea that

works in this algorithms, and many other applications of semidefinite programming, is to choose
a random hyperplane through the origin, partitioning Rn into two halfspaces. Then we partition
the vertices of the graph according to which halfspace their corresponding vector belongs to. If
(u, v) is an edge of G with corresponding vectors xu,xv, and if θ denotes the angle between those
two vectors, then the probability that the random halfspace separates xu from xv is θ/π, whereas
the contribution of edge (u, v) to the objective function of the SDP is 1

2
(1−xu ·xv) = 1

2
(1−cos θ).

It is an elementary exercise in calculus to prove that

∀θ ∈ [0, π] θ
π
≥ (0.878) ·

[
1
2
(1− cos θ)

]
.

Therefore, the approximation ratio of the algorithm is at most 1/(0.878) ≈ 1.14.

3.2 A Randomized 2-Approximation for Vertex Cover

For the unweighted vertex cover problem (the special case of weighted vertex cover in which
wv = 1 for all v) the following incredibly simple algorithm is a randomized 2-approximation.

Algorithm 6 Randomized approximation algorithm for unweighted vertex cover

1: Initialize S = ∅.
2: for all e = (u, v) ∈ E do
3: if neither u nor v belongs to S then
4: Randomly choose u or v with equal probability.
5: Add the chosen vertex into S.
6: end if
7: end for
8: return S

Clearly, the algorithm runs in linear time and always outputs a vertex cover. To analyze its
approximation ratio, as usual, we define an appropriate loop invariant. Let OPT denote any
vertex cover of minimum cardinality. Let Si denote the contents of the set S after completing
the ith iteration of the loop. We claim that for all i,

E[|Si ∩OPT|] ≥ E[|Si \OPT|]. (15)

The proof is by induction on i. In a loop iteration in which e = (u, v) is already covered by Si−1,
we have Si = Si−1 so (15) clearly holds. In a loop iteration in which e = (u, v) is not yet covered,
we know that at least one of u, v belongs to OPT. Thus, the left side of (15) has probability at
least 1/2 of increasing by 1, while the right side of (15) has probability at most 1/2 of increasing
by 1. This completes the proof of the induction step.

Consequently, letting S denote the random vertex cover generated by the algorithm, we have
E[|S ∩OPT|] ≥ E[|S \OPT|] from which it easily follows that E[|S|] ≤ 2 · |OPT|.

The same algorithm design and analysis technique can be applied to weighted vertex cover.
In that case, we choose a random endpoint of an uncovered edge (u, v) with probability inversely
proportional to the weight of that endpoint.

Algorithm 7 Randomized approximation algorithm for weighted vertex cover

1: Initialize S = ∅.
2: for all e = (u, v) ∈ E do
3: if neither u nor v belongs to S then
4: Randomly choose u with probability wv

wu+wv
and v with probability wu

wu+wv
.

5: Add the chosen vertex into S.
6: end if
7: end for
8: return S

The loop invariant is

E

[∑
v∈Si∩OPT

wv

]
≥ E

 ∑
v∈Si\OPT

wv

 .
In a loop iteration when (u, v) is uncovered, the expected increase in the left side is at least
wuwv

wu+wv
whereas the expected increase in the right side is at most wuwv

wu+wv
.

4 Linear Programming with Randomized Rounding

Linear programming and randomization turn out to be a very powerful when used in combination.
We will illustrate this by presenting an algorithm of Raghavan and Thompson for a problem of
routing paths in a network to minimize congestion. The analysis of the algorithm depends on the
Chernoff bound, a fact from probability theory that is one of the most useful tools for analyzing
randomized algorithms.

4.1 The Chernoff bound

The Chernoff bound is a very useful theorem concerning the sum of a large number of independent
random variables. Roughly speaking, it asserts that for any fixed β > 1, the probability of the
sum exceeding its expected value by a factor greater than β tends to zero exponentially fast as
the expected sum tends to infinity.

Theorem 3. Let X1, . . . , Xn be independent random variables taking values in [0, 1], let X denote
their sum, and let µ = E [X]. For every β > 1,

Pr (X ≥ βµ) < e−µ[β ln(β)−(β−1)]. (16)

For every β < 1,
Pr (X ≤ βµ) < e−µ[β ln(β)−(β−1)]. (17)

Proof. The key idea in the proof is to make use of the moment-generating function of X, defined
to be the following function of a real-valued parameter t:

MX(t) = E
[
etX
]
.

From the independence of X1, . . . , Xn, we derive:

MX(t) = E
[
etX1etX2 · · · etXn

]
=

n∏
i=1

E
[
etXi

]
. (18)

To bound each term of the product, we reason as follows. Let Yi be a {0, 1}-valued random
variable whose distribution, conditional on the value of Xi, satisfies Pr(Yi = 1 | Xi) = Xi. Then
for each x ∈ [0, 1] we have

E
[
etYi
∣∣Xi = x

]
= xet + (1− x)e0 ≥ etx = E

[
etXi

∣∣Xi = x
]
,

where the inequality in the middle of the line uses the fact that etx is a convex function. Since
this inequality holds for every value of x, we can integrate over x to remove the conditioning,
obtaining

E
[
etYi
]
≥ E

[
etXi

]
.

Letting µi denote E[Xi] = Pr(Yi = 1) we find that[
etXi

]
≤
[
etYi
]

= µie
t + (1− µi) = 1 + µi(e

t − 1) ≤ exp
(
µi(e

t − 1)
)
,

where exp(x) denotes ex, and the last inequality holds because 1 + x ≤ exp(x) for all x. Now
substituting this upper bound back into (18) we find that

E
[
etX
]
≤

n∏
i=1

exp
(
µi(e

t − 1)
)

= exp
(
µ(et − 1)

)
.

The proof now splits into two parts depending on whether β > 1 or β < 1. In both cases we
will be choosing t = ln β for a reason to be disclosed later. If β > 1 then t = ln β > 0, hence
etX ≥ etβµ whenever X ≥ βµ. Since etX > 0 regardless, we have E

[
etX
]
≥ etβµ Pr(X ≥ βµ) and

Pr(X ≥ βµ) ≤ exp
(
µ(et − 1− βt)

)
. (19)

If β < 1 then t = ln β < 0, hence etX ≥ etβµ whenever X ≤ βµ. Since etX > 0 regardless, we
have E

[
etX
]
≥ etβµ Pr(X ≤ βµ) and

Pr(X ≤ βµ) ≤ exp
(
µ(et − 1− βt)

)
. (20)

In both cases, our choice of t is designed to minimize the right-hand side of (19) or (20); elemen-
tary calculus reveals that the global minimum is attained when t = ln β. Substituting this value
of t into (19) and (20) completes the proof of the theorem.

Corollary 4. Suppose X1, . . . , Xk are independent random variables taking values in [0, 1], such
that E[X1 + · · · + Xk] ≤ 1. Then for any N > 2 and any b ≥ 3 logN

log logN
, where log denotes the

base-2 logarithm, we have

Pr(X1 + · · ·+Xk ≥ b) <
1

N
. (21)

Proof. Let µ = E[X1 + · · ·+Xk] and β = b/µ. Applying Theorem 3 we find that

Pr(X1 + · · ·+Xk ≥ b) ≤ exp (−µβ ln(β) + µβ − µ)

= exp (−b(ln(β)− 1)− µ) ≤ e−b(ln(β/e)). (22)

Now, β = b/µ ≥ b, so
β

e
≥ b

e
≥ 3 logN

e log logN

and

b ln

(
β

e

)
≥
(

3 lnN

ln(logN)

)
· ln
(

3 logN

e log logN

)
= 3 ln(N) ·

(
1− ln(log logN)− ln(3) + 1

ln(logN)

)
> ln(N), (23)

where the last inequality holds because one can verify that ln(log x)− ln(3) + 1 < 2
3

ln(x) for all
x > 1 using basic calculus. Now, exponentiating both sides of (23) and combining with (22) we
obtain the bound Pr(X1 + · · ·+Xk ≥ b) < 1/N , as claimed.

4.2 An approximation algorithm for congestion minimization

We will design an approximation algorithm for the following optimization problem. The input
consists of a directed graph G = (V,E) with positive integer edge capacities ce, and a set of
source-sink pairs (si, ti), i = 1, . . . , k, where each (si, ti) is a pair of vertices such that G contains
at least one path from si to ti. The algorithm must output a list of paths P1, . . . , Pk such that Pi
is a path from si to ti. The load on edge e, denoted by `e, is defined to be the number of paths
Pi that traverse edge e. The congestion of edge e is the ratio `e/ce, and the algorithm’s objective
is to minimize congestion, i.e. minimize the value of maxe∈E (`e/ce). This problem turns out to
be NP-hard, although we will not prove that fact here.

The first step in designing our approximation algorithm is to come up with a linear program-
ming relaxation. To do so, we define a decision variable xi,e for each i = 1, . . . , k and each e ∈ E,
denoting whether or not e belongs to Pi, and we allow this variable to take fractional values.
The resulting linear program can be written as follows, using δ+(v) to denote the set of edges
leaving v and δ−(v) to denote the set of edges entering v.

min r

s.t.
∑

e∈δ+(v) xi,e −
∑

e∈δ−(v) xi,e =


1 if v = si

−1 if v = ti

0 if v 6= si, ti

∀i = 1, . . . , k, v ∈ V

∑k
i=1 xi,e ≤ ce · r ∀e ∈ E

xi,e ≥ 0 ∀i = 1, . . . , k, e ∈ E

(24)

When (xi,e) is a {0, 1}-valued vector obtained from a collection of paths P1, . . . , Pk by setting
xi,e = 1 for all e ∈ Pi, the first constraint ensures that Pi is a path from si to ti while the second
one ensures that the congestion of each edge is bounded above by r.

Our approximation algorithm solves the linear program (24), does some postprocessing of
the solution to obtain a probability distribution over paths for each terminal pair (si, ti), and
then outputs an independent random sample from each of these distributions. To describe
the postprocessing step, it helps to observe that the first LP constraint says that for every
i ∈ {1, . . . , k}, the values xi,e define a network flow of value 1 from si to ti. Define a flow to be
acyclic if there is no directed cycle C with a positive amount of flow on each edge of C. The
first step of the postprocessing is to make the flow (xi,e) acyclic, for each i. If there is an index
i ∈ {1, . . . , k} and a directed cycle C such that xi,e > 0 for every edge e ∈ C, then we can let
δ = min{xi,e | e ∈ C} and we can modify xi,e to xi,e − δ for every e ∈ C. This modified solution
still satisfies all of the LP constraints, and has strictly fewer variables xi,e taking nonzero values.
After finitely many such modifications, we must arrive at a solution in which each of the flow
(xi,e), 1 ≤ i ≤ k is acyclic. Since this modified solution is also an optimal solution of the linear
program, we may assume without loss of generality that in our original solution (xi,e) the flow
was acyclic for each i.

Next, for each i ∈ {1, . . . , k} we take the acyclic flow (xi,e) and represent it as a probability
distribution over paths from si to ti, i.e. a set of ordered pairs (P, πP) such that P is a path from
si to ti, πP is a positive number interpreted as the probability of sampling P , and the sum of the
probabilities πP over all paths P is equal to 1. The distribution can be constructed using the
following algorithm.

Algorithm 8 Postprocessing algorithm to construct path distribution

1: Given: Source si, sink ti, acyclic flow xi,e of value 1 from si to ti.
2: Initialize Di = ∅.
3: while there is a path P from si to ti such that xi,e > 0 for all e ∈ P do
4: πP = min{xi,e | e ∈ P}
5: Di = Di ∪ {(P, πP)}.
6: for all e ∈ P do
7: xi,e = xi,e − πP
8: end for
9: end while
10: return Di

Each iteration of the while loop strictly reduces the number of edges with xi,e > 0, hence the
algorithm must terminate after selecting at most m paths. When it terminates, the flow (xi,e)
has value zero (as otherwise there would be a path from si to ti with positive flow on each edge)
and it is acyclic because (xi,e) was initially acyclic and we never put a nonzero amount of flow
on an edge whose flow was initially zero. The only acyclic flow of value zero is the zero flow, so
when the algorithm terminates we must have xi,e = 0 for all e.

Each time we selected a path P , we decreased the value of the flow by exactly πP . The value
was initially 1 and finally 0, so the sum of πP over all paths P is exactly 1 as required. For any
given edge e, the value xi,e decreased by exactly πP each time we selected a path P containing
e, hence the combined probability of all paths containing e is exactly xi,e.

Performing the postprocessing algorithm 8 for each i, we obtain probability distributions
D1, . . . ,Dk over paths from si to ti, with the property that the probability of a random sample
from Di traversing edge e is equal to xi,e. Now we draw one independent random sample from
each of these k distributions and output the resulting k-tuple of paths, P1, . . . , Pk. We claim that
with probability at least 1/2, the parameter maxe∈E {`e/ce} is at most αr, where α = 3 log(2m)

log log(2m)
.

This follows by a direct application of Corollary 4 of the Chernoff bound. For any given edge e,
we can define independent random variables X1, . . . , Xk by specifying that

Xi =

{
(ce · r)−1 if e ∈ Pi
0 otherwise.

These are independent and the expectation of their sum is
∑k

i=1 xi,e/(ce · r), which is at most 1
because of the second LP constraint above. Applying Corollary 4 with N = 2m, we find that the
probability of X1 + · · ·+Xk exceeding α is at most 1/(2m). Since X1 + · · ·Xk = `e(ce · r)−1, this
means that the probability of `e/ce exceeding αr is at most 1/(2m). Summing the probabilities
of these failure events for each of the m edges of the graph, we find that with probability at least
1/2, none of the failure events occur and maxe∈E {`e/ce} is bounded above by αr. Now, r is a
lower bound on the parameter maxe∈E {`e/ce} for any k-tuple of paths with the specified source-
sink pairs, since any such k-tuple defines a valid LP solution and r is the optimum value of the
LP. Consequently, our randomized algorithm achieves approximation factor α with probability
at least 1/2.

