The Design
and Analysis
of Algorithms

Dexter C. Kozen

With 72 lllustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Lecture 21 Reductions and
NP-Completeness

We have seen several problems such as maximum flow and matching that
at first glance appear intractible, but upon closer study admit very efficient
algorithms. Unfortunately, this is the exception rather than the rule. For
every interesting problem with a polynomial-time algorithm, there are dozens
for which all known solutions require exponential time in the worst case. These
problems occur in various fields, to wit:

Logic:

o CNF satisfiability (CNFSat): given a Boolean formula B in conjunctive
normal form (CNF), is there a truth assignment that satisfies B?

Graph Theory:

o Clique: given a graph G = (V, E) and an integer m, does G contain Ky
(the complete graph on m vertices) as a subgraph?

® k-Colorability: given a graph G = (V,E) and an integer k, is there a
coloring of G with k or fewer colors? A coloringis amap y : V — C
such that no two adjacent vertices have the same color; i.e., if (u,v) € E

then x(u) # x(v).

111

112 LECTURE 21 REDUCTIONS AND NP-COMPLETENESS

Operations Research:

e Any of a number of generalizations of the one-processor scheduling prob-
lem of Miscellaneous Exercise 4.

e Integer Programming. given a set of linear constraints A and a linear

function f, find an integer point maximizing f subject to the constraints
A.

e The Traveling Salesman Problem (TSP): given a set of cities and dis-
tances between them, find a tour of minimum total distance visiting all
cities at least once.

None of these problems are known to have a polynomial time solution. For
example, the best known solutions to the Boolean satisfiability problem are
not much better than essentially evaluating the given formula on all 2" truth
assignments. On the other hand, no one has been able to prove that no
substantially better algorithm exists, either.

However, we can show that all these problems are computationally equiva-
lent in the sense that if one of them is solvable by an efficient algorithm, then
they all are. This involves the concept of reduction. Intuitively, a problem A
is said to be reducible to a problem B if there is a way to encode instances
z of problem A as instances o(z) of problem B. The encoding function o is
called a reduction. If ¢ is suitably efficient, then any efficient algorithm for B
will yield an efficient algorithm for A by composing it with o.

The theory has even deeper implications than this. There is a very gen-
eral class of decision problems called NP, which roughly speaking consists of
problems that can be solved efficiently by a nondeterministic guess-and-verify
algorithm. A problem is said to be NP -complete if it is in this class and every
other problem in NP reduces to it. Essentially, it is a hardest problem in the
class NP. If an NP-complete problem has an efficient deterministic solution,
then so do all problems in NP. All of the problems named above are known
to be NP-complete.

The theory of efficient reductions and NP-completeness was initiated in the
early 1970s. The two principal papers that first demonstrated the importance
of these concepts were by Cook [22], who showed that Boolean satisfiability
was NP-complete, and Karp [57, 58] who showed that many interesting com-
binatorial problems were interreducible and hence NP-complete. Garey and
Johnson’s text [39] provides an excellent introduction to the theory of NP-
completeness and contains an extensive list of NP-complete problems. By
now the problems known to be NP-complete number in the thousands.

21.1 Some Efficient Reductions

We have seen examples of reductions in previous lectures. For example,
Boolean matrix multiplication and transitive closure were shown to be re-

LECTURE 21 REDUCTIONS AND NP-COMPLETENESS 113

ducible to each other. To illustrate the concept further, we show that CNFSat,
the satisfiability problem for Boolean formulas in conjunctive normal form, is
reducible to the clique problem.

Definition 21.1 Let B be a Boolean formula. A literal is either a variable or
the negation of a variable (we write -z and & interchangeably). A clause is a
disjunction of literals, e.g. C = (z; V -z, V z3). The formula B is said to be
in conjunctive normal form (CNF) if it is a conjunction of clauses Cy ACy A
- A Cp. m]

Note that to satisfy a formula in CNF, a truth assignment must assign the
value true to at least one literal in each clause, and different occurrences of
the same literal in different clauses must receive the same truth value.

Given a Boolean formula B in CNF, we show how to construct a. graph G
and an integer k such that G has a clique of size k iff B is satisfiable. We take
k to be the number of clauses in B. The vertices of G are all the occurrences
of literals in B. There is an edge of G between two such occurrences if they are
in different clauses and the two literals are not complementary. For example,
the formula

C C, Cs
($1V:L‘2) A (E—lv_fz) A (SBlv_.’fg)

would yield the graph

The graph G is k-partite and has a k-clique iff B is satisfiable. Essentially,
an edge between two occurrences of literals represents the ability to assign
them both ¢rue without a local conflict; a k-clique thus represents the ability
to assign true to at least one literal from each clause without global conflict. In
the example above, k = 3 and there are two 3-cliques (triangles) corresponding
to two ways to satisfy the formula.

Let us prove formally that G has a k-clique iff B is satisfiable. First
assume that B is satisfiable. Let 7: {z),...,z,} — {true, false} be a truth
assignment satisfying B. At least one literal in each clause must be assigned
true under 7. Choose one such literal from each clause. The vertices of G
corresponding to these true literals are all connected to each other because no
Pair is complementary, so they form a k-clique. Conversely, suppose G has
a k-clique. Since G is k-partite and the partition elements correspond to the

114 LECTURE 21 REDUCTIONS AND NP-COMPLETENESS

clauses, the k-clique must have exactly one vertex in each clause. Assign true
to the literals corresponding to the vertices in the clique. This can be done
without conflict, since no pair of complementary literals appears in the clique.
Assign truth values to the remaining variables arbitrarily. The resulting truth
assignment assigns ¢rue to at least one literal in each clause, thus satisfies B.

We have just shown how to encode a given instance of the CNFSat problem
in an instance of the clique problem, or in the accepted parlance, reduced the
CONFSat problem to the clique problem.

An important caveat: a reduction reduces the problem being encoded to
the problem encoding it. Sometimes you hear it said backwards; for example,
that the construction above reduces Clique to CNFSat. This is incorrect.

Although we do not know how to solve Clique or CNFSat in any less
than exponential time, we do know by the above reduction that if tomorrow
someone were to come up with a polynomial-time algorithm for Clique, we
would immediately be able to derive a polynomial-time algorithm for CNFSat:
given B, just produce the graph G and k as above, and apply the polynomial-
time algorithm for Clique. For the same reason, if tomorrow someone were to
show an exponential lower bound for CNFSat, we would automatically have
an exponential lower bound for Clique.

We show for purposes of illustration that there is a simple reduction in
the other direction as well. To reduce Clique to CNFSat, we must show how
to construct from a given undirected graph G = (V,E) and a number k a
Boolean formula B in CNF such that G has a clique of size k if and only if B
is satisfiable.

Given G = (V,E) and k, take as Boolean variables z} for v € V and
1 < i < k. Intuitively, z¥ says, “u is the it" element of the clique.” The formula
B is the conjunction of three subformulas C, D and £, with the following
intuitive meanings and formal definitions:

e C = “For every i, 1 < i <k, there is at least one u € V such that u is
the i*® element of the clique.”

&

C = (V =) .
i=1 ueVv
e D = “For every i, 1 < i < k, no two distinct vertices are both the !

element of the clique.”

e & = “Tfu and v are in the clique, then (u, v) is an edge of G. Equivalently,
if (u,v) is not an edge, then either u is not in the clique or v is not in

LECTURE 21 REDUCTIONS AND NP-COMPLETENESS 115

the clique.”

£ = /\ /\ (—lmrv—!m;-’) .

(u,0)¢E 1<i,j<k

We take B = CADAE. Any satisfying assignment 7 for CAD picks out a set
of k vertices, namely those u such that 7(z%) = true for some 5, 1<i<k If
7 also satisfies £, then those k vertices form s clique. Conversely, if u,, ..., uy
is a k-clique in G, set 7(z}") = true, 1 < i < k, and set 7(y) = false for all
other variables y; this truth assignment satisfies B.

It is perhaps surprising that two problems so apparently different as CN-
FSat and Clique should be computationally equivalent. However, this turns
out to be a widespread phenomenon.

Lecture 22 More on Reductions and
NP-Completeness

Before we give a formal definition of reduction, let us clarify the notion of a
decision problem. Informally, a decision problem is a yes-or-no question. A
decision problem is given by a description of the problem domain, i.e. the set
of all possible instances of the problem, along with a description of the set of
“yes” instances.

For example, consider the problem of determining whether a given undi-
rected graph G has a k-clique. An instance of the problem is a pair (G, k),
and the problem domain is the set of all such pairs. The “yes” instances are
the pairs (G, k) for which G has a clique of size k.

There are many interesting discrete problems that are not decision prob-
lems. For example, many optimization problems like the traveling salesman
problem or the integer programming problem ask for the calculation of an
object that maximizes some objective function. However, many of these prob- -
lems have closely related decision problems that are no simpler to solve than
the optimization problem. For the purposes of this discussion of reductions
and NP-completeness, we will restrict our attention to decision problems.

Definition 22.1 Let A C Y and B C I' be decision problems. (Here X and
I are the problem domains, and A and B are the “yes” instances.) We write
A <P B and say that A reduces to B in polynomial time if there is a function
o : & — I such that

e o is computable by a deterministic Turing machine in polynomial time;

116

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 117

e for all problem instances z ¢ X,
reA ff o(z)eB.
We write A= B if both A <P B and B <P A O

"The reducibility relation < is often called polynomial-time many-one or Karp
reducibility. The superscript p stands for polynomial-time. The subscript m
stands for many-one and describes the function o, and is included to dis-
tinguish <P from another popular polynomial-time reducibility relation <%,
often called polynomial-time Turing or Cook reducibility. The relation <P is
stronger than <% in the sense that

A<EB — A<B.

The formal definition of <2 involves oracle Turing machines and can be found
in [39, pp. 111ff].
Intuitively, if A <P B then A is no harder than B. In particular,

Theorem 22.2 If A <P B and B has a polynomial-time algorithm, then so
does A.

Proof. Given an instance z of the problem A, compute o(z) and ask
whether o(z) € B. Note that the algorithm for B runs in polynomial time
in the size of its input o(z), which might be bigger than z; but since ¢ is
computable in polynomial time on a Turing machine, the size of o(z) is at
most polynomial in the size of z, and the composition of two polynomials is
still a polynomial, so the overall algorithm is polynomial in the size of z. O

In the last lecture we showed that CNFSat =P, Clique. Below we give some
more examples of polynomial-time reductions between problems.

Definition 22.3 (Independent Set) An independent set in an undirected
graph G = (V,E) is a subset U of V such that U2NE =0, i.e. no two
vertices in U are connected by an edge in E. The independent set problem is
to determine, given G = (V,E) and k > 0, whether @ has an independent set
U of cardinality at least k. O

Note that the use of “independent” here is not in the sense of matroids.
There exist easy polynomial reductions from/to the clique problem. Con-
Sider the complementary graph G — (V, E), where

E = {(U1U)|u7év’ (Uav)ﬁE}

Then G has a clique of size k iff G has an independent set of size k. This
simple one-to-one correspondence gives reductions in both directions, therefore
Independent Set =P, Clique.

118 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

Definition 22.4 (Vertex Cover) A vertez cover in an undirected grapl%
G = (V,E) is a set of vertices U C V such that every edge in E is adjacent t0
some vertex in U. The vertex cover problem is to determine, given G=(V,E)
and k > 0, whether there exists a vertex cover U in G of cardinality at most
k. O

Again, there exist easy polynomial reductions from/to Independent Set:
U C V is a vertex cover iff V —U is an independent set. Therefore Vertex
Cover =P, Independent Set.

Definition 22.5 (k-CNFSat) A Boolean formula is in k-conjunctive normal
form (k-CNF) if it is in conjuctive normal form and has at most k literals per
clause. The problem k-CNFSat is just CNFSat with input instances restricted
to formulas in k-CNF. In other words, given a Boolean formula in k-CNF, does
it have a satisfying assignment? O

In the general CNFSat problem, the number of literals per clause is not re-
stricted and can grow as much as linearly with the size of the formula. In
the k-CNFSat problem, the number of literals per clause is restricted to k,
independent of the size of the formula. The k-CNFSat problem is therefore a
restriction of the CNFSat problem, and could conceivably be easier to solve
than CNFSat. It turns out that 2CNFSat (and hence 1CNFSat also) is solv-
able in linear time, whereas k&-CNFSat is as hard as CNFSat for any k>3 We
prove the latter statement by exhibiting a reduction CNFSat <[, 3CNFSat.
Let B be an arbitrary Boolean formula in CNF. For each clause of the form

(VL VooVl V L) (27)

with m > 4, let z;,x2, ..., Zm—3 be new variables and replace the clause (27)
in B with the formula

(31 sz\/ml) A (—1I1VE3V:B2)/\ ("932V£4V:L'3)/\"'
/\(‘ll‘m_,; vV gm_z \ :I:m_3) A (_lﬂf,'m_3 vV €m_1 \ fm) .

Let B’ be the resulting formula. Then B’ is in 3CNF, and B’ is satisfiable iff
B is. This follows from several applications of the following lemma:

Lemma 22.6 For any Boolean formulas C, D, £ and variable x not appearing
in C,D, or &, the formula

(zVC)A(~zVD)ANE (28)
is satisfiable if and only if the formula
(CVD)AE (29)

is satisfiable.

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 119

Proof. This is just the resolution rule of propositional logic. Any satisfying
truth assignment for (28) gives a satisfying truth assignment for (29), since
one of x, —~z is false, so either C or D is true. Conversely, in any satisfying
truth assignment for (29), one of C,D is true. If C, assign z := false. If D,
assign « := true. We can assign z freely since it does not appear in C,D or €.
In either case (28) is satisfied. O

The formula B' is easily constructed from B in polynomial time. This con-
stitutes a polynomial-time reduction from CNFSat to 3CNFSat. Furthermore,
3CNFSat is trivially reducible to k-CNFSat for any k > 3, which in turn is
trivially reducible to CNFSat. Since <P, is transitive, k-CNFSat =P CNFSat
for k > 3.

The problem 2CNFSat is solvable in linear time. In this case the clauses in
B contain at most two literals, and we can assume exactly two without loss of
generality by replacing any clause of the form (£) with (£ V £). Now we think
of every two-literal clause (£ V £') as a pair of implications

(£ —¢) and (=€ —0) . (30)

Construct a directed graph G = (V, E) with a vertex for every literal and
directed edges corresponding to the implications (30).

We claim that B is satisfiable iff no pair of complementary literals both
appear in the same strongly connected component of G. Under any satisfying
truth assignment, all literals in a strong component of G must have the same
truth value. Therefore, if any variable z appears both positively and negatively
in the same strong component of G, B is not satisfiable.

Conversely, suppose that no pair of complementary literals both appear in
the same strong component of G. Consider the quotient graph G’ obtained by
collapsing the strong components of G as described in Lecture 4. As proved
in that lecture, the graph G’ is acyclic, therefore induces a partial order on its
vertices. This partial order extends to a total order. We assign z := false if the
strong component of z occurs before the strong component of —z in this total
order, and z := true if the strong component of =z occurs before the strong
component of z. It can be shown that this gives a satisfying assignment.

We know how to find the strong components of G in linear time. This gives
a linear-time algorithm test for 2CNF satisfiability. We can also produce a
satisfying assignment in linear time, if one exists, using topological sort to
totally order the strong components.

Definition 22.7 (k-Colorability) Let C a finite set of colors and G = (V,E)
an undirected graph. A coloring is a map x : V — C such that x(u) # x(v)
for (u,v) € E. Given G and k, the k-colorability problem is to determine
whether there exists a coloring using no more than % colors. O

For k = 2, the problem is easy: a graph is 2-colorable iff it is bipartite iff
it has no odd cycles. This can be checked by BFS or DFS in linear time. We

120 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

show that for k = 3, the problem is as hard as CNFSat by giving a reduction
CNFSat <P 3-colorability.

Let B be a Boolean formula in CNF. We will construct a graph G that is
3-colorable iff B is satisfiable.

There will be three special vertices called R, B, and G, which will be
connected in a triangle. In any 3-coloring, they will have to be colored with
different colors, so we assume without loss of generality that they are colored
red, blue, and green, respectively.

R G

B

We include a vertex for each literal, and connect each literal to its complement
and to the vertex B as shown.
T T

B

In any 3-coloring, the vertices corresponding to the literals z and T will have
to be colored either red or green, and not both red or both green. Intuitively,
a legal 3-coloring will represent a satisfying truth assignment in which the
green literals are true and the red literals are false.

To complete the graph, we add a subgraph like the one shown below for
each clause in B. The one shown below would be added for the clause (zVyV
ZV u VPV w). The vertices in the picture labeled G are all the same vertex,
namely the vertex G.

X Y

z U v
’ '
G Ge— G G—-{ G»—{ G +—
G ’ - * - G

This subgraph has the property that a coloring of the vertices on the top
row with either red or green can be extended to a 3-coloring of the whole
subgraph iff at least one of them is colored green. If all vertices on the top
row are colored red, then all the vertices on the middle row adjacent to vertices
on the top row must be colored blue. Starting from the left, the vertices along
the bottom row must be colored alternately red and green. This will lead to

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 121

a conflict with the last vertex in the bottom row. (If the number of literals in
the clause is odd instead of even as pictured, then the rightmost vertex in the
bottom row is R instead of G.)

Conversely, suppose one of the vertices on the top row is colored green.
Pick one such vertex. Color the vertex directly below it in the middle row red
and the vertex directly below that on the bottom row blue. Color all other
vertices on the middle row blue. Starting from the left and right ends, color
the vertices along the bottom row as forced, either red or green. The coloring
can always be completed.

Thus if there is a legal 3-coloring, then the subgraph corresponding to each
clause must have at least one green literal, and truth values can be assigned so
that the green literals are true. This gives a satisfying assignment, Conversely,
if there is a satisfying assignment, color the true variables green and the false
ones red. Then there is a green literal in each clause, so the coloring can be
extended to a 3-coloring of the whole graph.

From this it follows that B is satisfiable iff G is 3-colorable, and the graph G
can be constructed in polynomial time. Therefore CNFSat <P 3-colorability.

One can trivially reduce 3-colorability to k-colorability for k > 3 by ap-
pending a k— 3 clique and edges from every vertex of the k — 3 clique to every
other vertex.

One may be tempted to conclude that in problems like k-CNFSat and
k-colorability, larger values of k always make the problem harder. On the
contrary, we shall see in the next lecture that the k-colorability problem for
planar graphs is easy for k£ < 2 and &k > 4, but as hard as CNFSat for k = 3.

Lecture 23 More NP-Complete Problems

23.1 Planar Graph Colorability

Often in problems with a parameter k like k-CNFSat and k-colorability, larger
values of k make the problem harder. This is not always the case. Consider the
problem of determining whether a planar graph has a k-coloring. The problem
is trivial for k = 1, easy for k = 2 (check by DFS or BFS whether the graph is
bipartite, i.e. has no odd cycles), and trivial for k = 4 or greater by the Four
Color Theorem, which says that every planar graph is 4-colorable. This leaves
k = 3. We show below that 3-colorability of planar graphs is no easier than
3-colorability of arbitrary graphs. This result is due to Garey, Johnson, and
Stockmeyer [40]; see also Lichtenstein [72] for some other NP-completeness
results involving planar graphs.

We will reduce 3-colorability of an arbitrary graph to the planar case.
Given an undirected graph G = (V, E), possibly nonplanar, embed the graph
in the plane arbitrarily, letting edges cross if necessary. We will replace each

122

LECTURE 23 MORE NP-COMPLETE PROBLEMS 123

edge crossing with the planar widget W shown below.

'The widget W is a planar graph with the following interesting properties:

(i) in any legal 3-coloring of W, the opposite corners are forced to have the
same color;

(ii) any assignment of colors to the corners such that opposite corners have
the same color extends to a 3-coloring of all of W.

'To see this, color the center of W red: then the vertices adjacent to the center
must be colored blue or green alternately around the center, say

@

Now the northeast vertex can be colored either red or green. In either case,
the colors of all the remaining vertices are forced (proceed counterclockwise to
obtain the left hand coloring and clockwise to obtain the right hand coloring):

124 LECTURE 23 MORE NP-COMPLETE PROBLEMS

All other colorings are obtained from these by permuting the colors.

For each edge (u,v) in E, replace each point at which another edge crosses
(u,v) in the embedding with a copy of W. Identify the adjacent corners of
these copies of W and identify the outer corners of the extremal copies with u
and v, all except for one pair, which are connected by an edge. The following
diagram illustrates an edge (u,v) with four crossings before and after this
operation. In this diagram, the copy of W closest to v is connected to v by
an edge, and all other adjacent corners of copies of W are identified.

The resulting graph G' = (V', E') is planar. If
x: V' — {red, blue, green}

is a 3-coloring of G, then property (i) of W implies that x restricted to V' is
a 3-coloring of G. Conversely, if x : V — {red, blue, green} is a 3-coloring of
G, then property (ii) of W allows x to be extended to a 3-coloring of G'.

We have given a reduction of the 3-colorability problem for an arbitrary
graph to the same problem restricted to planar graphs. Thus the latter prob-
lem is as hard as the former.

23.2 NP-Completeness

The following definitions lay the foundations of the theory of NP-complete-
ness. More detail can be found in (3, 39].

We fix once and for all a finite alphabet ¥ consisting of at least two symbols.
From now on, we take X to be the problem domain, and assume that instances
of decision problems are encoded as strings in ¥* in some reasonable way.

Definition 23.1 The complexity class NP consists of all decision problems
A C ©* such that A is the set of input strings accepted by some polynomial-
time-bounded nondeterministic Turing machine. The complexity class P con-
sists of all decision problems A C L* such that A is the set of input strings
accepted by some polynomial-time-bounded deterministic Turing machine. O

Note that P C NP since every deterministic machine is a nondeterministic
one that does not happen to make any choices. It is not known whether
P = NP; this is arguably the most important outstanding open problem in
computer science.

LECTURE 23 MORE NP-COMPLETE PROBLEMS 125

Definition 23.2 The set A is NP-hard (with respect to the reducibility rela-
tion <P)if B <P A for all B € NP. |

Theorem 23.3 If A is NP-hard and A € P, then P = NP.

Proof. For any B € NP, compose the polynomial-time algorithm for A
with the polynomial-time function reducing B to A to get a polynomial time
algorithm for B. O

Definition 23.4 The set A is NP-complete if A is NP-hard and A € NP. D
Theorem 23.5 If A is NP-complete, then
AeP - P=NP.

Definition 23.6 The complexity class coNP is the class of sets A C ¥
whose complements A = ©* — A are in NP. A set B is coNP-hard if every
problem in coNP reduces in polynomial time to B. It is coNP-complete if in
addition it is in coNP. O

The following theorem is immediate from the definitions.

Theorem 23.7

1. A<E B iff A<P B.

2. A is NP-hard iff A is coNP-hard.

3. A is NP-complete iff A is coNP-complete.

4. If A is NP-complete then A € coNP iff NP = coNP.

It is unknown whether NP = coNP.

We will show later that the problems CNFSat, 3CNFSat, Clique, Vertex
Cover, and Independent Set, which we have shown to be =P -equivalent, are
all in fact NP-complete.

23.3 More NP-complete problems

Before we prove the NP-completeness of the problems we have been consider-
ing, let us consider some more problems in this class. Some of these problems,
such as Traveling Salesman, Bin Packing, and Integer Programming, are very
natural and important in operations research and industrial engineering. We
start with the eract cover problem.

Definition 23.8 (Exact Cover) Given a finite set X and a family of subsets
S of X, is there a subset S’ C S such that every element of X lies in exactly
one element of S'? O

126 LLECTURE 23 MORE NP-COMPLETE PROBLEMS

We show that the problem Exact Cover is NP-hard by reduction from
the problem of 3-colorability of undirected graphs. See [39] for a different
approach involving the 3-dimensional matching problem.

Lemma 23.9 3-Colorability <2 Ezact Cover.

Proof Suppose we are given an undirected graph G = (V, E). We show
how to produce an instance (X, S) of the exact cover problem for which an
exact cover exists iff G has a 3-coloring.

Let C = {red, blue, green}. For each u € V, let N(u) be the set of
neighbors of u in G. Since G is undirected, v € N(v) iff v € N(u).

For each u € V, we include u in X along with 3(|N(u)[+ 1) additional
elements of X. These 3(|N(u)| + 1) additional elements are arranged in three
disjoint sets of |[N(u)| + 1 elements each, one set corresponding to each color.
Call these three sets ST, SPlue, G&een For each color ¢ € C, pick a special
element pS from S¢ and associate the remaining |N(u)| elements of 57 with
the elements of N (u) in a one-to-one fashion. Let g;, denote the element of
S¢ associated with v € N (u).

The set S will contain all two element sets of the form

{u, Py} (31)

for u € V and ¢ € C, as well as all the sets S¢ for u € V and c € C. Here is a
picture of what we have so far for a vertex u of degree 5 with v € N(u). The
ovals represent the three sets S; and the lines represent the three two-element

sets (31).

To complete S, we include all two element sets of the form

2 i

i ot omr = e+ eeasrm e

o S e e AT B et e e etk . Ze i e S e

{G50s Gou’ (32)

for all (u,v) € E and ¢,d € C with ¢ # ¢/. Here is a picture showing a part
of the construction for two vertices u and v of degrees 5 and 3 respectively,
where (u,v) in E. The six lines in the center represent the two-element sets

(32). {

LECTURE 23 MORE NP-COMPLETE PROBLEMS 127

We now argue that the instance (X, S) of Exact Cover just constructed is
a “yes” instance, i.e. an exact cover 8’ C S of X exists, iff the graph G has
a 3-coloring. Suppose first that G has a 3-coloring x : V — C. We construct
an exact cover S C § as follows. For each vertex u, let S’ contain the sets
{u,pX™} and S¢ for ¢ # x(u). This covers everything except points of the
form ¢X(*), where (u,v) € E. For each edge (u,v), let S’ also contain the set

uy
{gX{®) @)}, This set is in S since x(u) # x(v). This covers all the remaining
points, and each point is covered by exactly one set in §’.

Conversely, suppose S’ is an exact cover. Each u is covered by exactly one
set in S/, and it must be of the form {u,p¢} for some c. Let x(u) be that ¢;
we claim that x is a valid coloring, i.e. that if (u,v) € E then x(u) # x(v).
For each u, since {u,pX"} € ', we cannot cover p¢ for ¢ # x(u) by any set
of the form (31), since u is already covered; therefore they must be covered
by the sets S¢, which are the only other sets containing the points pS. The
sets {u,pX®} and S¢, ¢ # x(u) cover all points except those of the form

X() (u,v) € E. The only way S’ can cover these remaining points is by the

sets (32). By construction of S, these sets are of the form {g*), X"} for
(u,v) € E and x(u) # x(v)- D

Lecture 24 Still More NP-Complete
Problems

In this lecture we use the basic NP-complete problems given in previous lec-
tures, which may have appeared contrived, to show that several very natural
and important decision problems are NP-complete.

We first consider a collection of problems with many applications in oper-
ations research and industrial engineering.

Definition 24.1 (Knapsack) Given a finite set S, integer weight function
w: § — N, benefit function b : § — N, weight limit W € AN, and desired
benefit B € N, determine whether there exists a subset S’ C S such that

S wa) < W

acs’

Eb(a) > B.

acS’
O

The name is derived from the problem of trying to decide what you really
need to take with you on your camping trip. For another example: you are
the coach of a crew team, and you wish to select a starting squad of rowers
with a combined weight not exceeding W and combined strength at least B.

128

LECTURE 24 STiLL MORE NP-COMPLETE PROBLEMS 129

Definition 24.2 (Subset Sum) Given a finite set S, integer weight function
w: 8§ — N, and target integer B, does there exist a subset S’ C S such that

> w(e) = B?
acs’
O

Definition 24.3 (Partition) Given a finite set § and integer weight function
w: § — N, does there exist a subset S’ C S such that

Zw(a) = z w(a) ?

acs’ acs-5'

Trivially, Partition reduces to Subset Sum by taking

1
B = -3 w(a).
2 acs
Also, Subset Sum reduces to Partition by introducing two new elements of
weight N — B and N — (£ — B), respectively, where

Y o= Z w(a)
acs

and N is a sufficiently large number (actually N > ¥ will do). The number
N is chosen large enough so that both new elements cannot go in the same
partition element, because together they outweigh all the other elements. Now
we ask whether this new set of elements can be partitioned into two sets of
equal weight (which must be N). By leaving out the new elements, this gives
a partition of the original set into two sets of weight B and & — B.

Both Subset Sum and Partition reduce to Knapsack. To reduce Partition
to Knapsack, take b =w and W = B = %E.

We show that these three problems are as hard as Exact Cover by reducing
Exact Cover to Subset Sum. Assume that X = {0,1,...,m — 1} in the given
instance (X, S) of Exact Cover. For z € X, define

#r = {AeS|ze A},

the number of elements of S containing z. Let p be a number exceeding all
#2,0 <z <m—1. Encode A € S as the number

w(d) = > p°
rcA
and take

m~-1 T
p"—1
B = = ;
27 p—1

130 LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS

In p-ary notation, w(A) looks like a string of 0’s and 1’s with a 1 in position
z for each £ € A and 0 elsewhere. The number B in p-ary notation looks like
a string of 1’s of length m. Adding the numbers w(A) simulates the union of
the sets A. The number p was chosen big enough so that we do not get into
trouble with carries. Asking whether there is a subset sum that gives B is the
same as asking for an exact cover of X.

The bin packing problem is an important problem that comes up in indus-
trial engineering and computer memory management.

Definition 24.4 (Bin Packing) Given a finite set S, volumes w : § — N,
and bin size B € A, what is the minimum number of bins needed to contain
all the elements of S? Expressed as a decision problem, given the above data
and a natural number k, does there exist a packing into k or fewer bins? D

We can easily reduce Partition to Bin Packing by taking B to be half the
total weight of all elements of S and k£ = 2.

An extremely important and general problem in operations research is the
integer programming problem.

Definition 24.5 (Integer Programming) Given rational numbers a;;, c;,
and b;, 1 <i<m,1<j<n, find integers z,,z2,...,Z, that maximize the
linear function

n
E CiL 5
i=1
subject to the linear constraints

Za,-ja:j S b.i, lgzgm (33)
j=1

The corresponding decision problem is to test whether there exists a point
with integer coordinates in a region defined by the intersection of half-spaces:
given a;; and b;, 1 < ¢ <m, 1 < j < n, test whether there exists an integer
point z1,...,x, in the region (33). O

In linear programming, the z;’s are not constrained to be integers, but may be
real. The linear programming problem was shown to be solvable in polynomial
time in 1980 by Khachian [60] using a method that has become known as the
ellipsoid method. In 1984, a more efficient polynomial time algorithm was
given by Karmarkar [56]; his method has become known as the interior point
method. Since that time, several refinements have appeared [90, 102]. The
older simplex method, originally due to Dantzig (see [19]), is used successfully
in practice but is known to be exponential in the worse case.

The integer programming problem is NP-hard, as the following reduction
from Subset Sum shows: the instance of Subset Sum consisting of a set S with

LECTURE 24 STIiLL MORE NP-COMPLETE PROBLEMS 131

weights w : S — A and threshold B has a positive solution iff the Integer
Programming instance

0 £z, £ 1, a€8S

> w(a)z, = B

acs
has an integer solution. It is also possible to show that Integer Programming
18 in NP by showing that if there exists an integer solution, then there exists
one with only polynomially many bits as a function of the size of the input
(n, m, and number of bits in the a;;, b;, and c;) [16]. The integer solution can
then be guessed and verified in polynomial time.

Definition 24.6 (Hamiltonian Circuit) A Hamiltonian circuit in a di-
rected or undirected graph G = (V, E) is a circuit that visits each vertex
in the graph exactly once. It is like an Euler circuit, except the constraint is
on vertices rather than edges. The Hamiltonian circuit problem is to determine
for a given graph G whether a Hamiltonian circuit exists.]

We reduce Vertex Cover to Hamiltonian Circuit. Recall that a verter cover
in an undirected graph G = (V, E) is a set of vertices U C V such that every
edge in E is adjacent to some vertex in U. The vertexr cover problem is to
determine, given G = (V, FE) and k > 0, whether there exists a vertex cover U
in G of cardinality at most k.

We will build a graph H which will have a Hamiltonian circuit iff G has a
vertex cover of size k. The main building block of H for the directed Hamil-
tonian circuit problem is a widget consisting of four vertices connected as
shown.

v
3 4
1 2

132 LECTURE 24 STiLL MORE NP-COMPLETE PROBLEMS

There is one widget corresponding to each edge (u,v) € E. In the widget
corresponding to the edge (u, v), one side corresponds to the vertex u and the
other to the vertex v.

These widgets have the following interesting property: any Hamiltonian
circuit that enters at vertex 1 must leave at vertex 2, and there are only
two ways to pass through, either straight through or in a zigzag pattern that
crosses to the other side and back. If it goes straight through, then all the
vertices on the u side and none of the vertices on the v side are visited. If
it crosses to the other side and back, then all the vertices on both sides are
visited. Any other path through the widget leaves some vertex stranded, so
the path could not be a part of a Hamiltonian circuit. Thus any Hamiltonian
circuit that enters at 1 either picks up the vertices in the widget all at once
using the zigzag path, or goes straight through and picks up only the vertices
on one side, then re-enters at 3 later on to pick up the vertices on the other
side.

The graph H is formed as follows. For each vertex u, we string together
end-to-end all the u sides of all the widgets corresponding to edges in E inci-
dent to u. Call this the u loop. In addition, H has a set K of k extra vertices,
where k is the parameter of the given instance of Vertex Cover denoting the
size of the vertex cover we are looking for. There is an edge from each vertex
in K to the first vertex in the u loop, and an edge from the last vertex in the
u loop to each vertex in K. '

* U1 U2 U3

h

Y

-
-

Y

L

from vertices in K to vertices in K

We now show that there is a vertex cover of size k in G iff H has a Hamiltonian
circuit. Suppose there is a vertex cover {ug,...,u;} of G of size k. Then H
has a Hamiltonian circuit: starting from the first vertex of K, go through the
u; loop. When passing through the widget corresponding to an edge (u1,v)
of G, take the straight path if v is in the vertex cover, i.e. if v = u; for some j
(the other side of the widget will be picked up later when we traverse the u;
loop), and take the zigzag path if v is not in the vertex cover. When leaving
the u; loop, go to the second vertex of K, then through the u; loop, and so
on, all the way around and back to the first vertex of K.

Conversely, if H has a Hamiltonian circuit, the number of u loops traversed
must be exactly k, and that set of vertices u forms a vertex cover of G.

This argument holds for both the directed and undirected case. Thus,
determining the existence of a Hamiltonian circuit in a directed or undirected

LECTURE 24 STILL MORE NP-COMPLETE PROBLEMS 133

graph is NP-hard. It is also in NP, since a Hamiltonian circuit can be guessed
and verified in polynomial time.

Finally, we consider the Traveling Salesman Problem (TSP). The optimiza-
tion version of this problem asks for a tour through a set of cities minimizing
the total distance. There are several versions of TSP, depending on the prop-
erties of the graph and distance function and the type of tour desired. We
consider here a quite general formulation.

Definition 24.7 (Traveling Salesman (TSP)) Given a number k¥ > 0 and
a directed graph G = (V, E) with nonnegative edge weights w : E — N, does
there exist a tour of total weight at most k visiting every vertex at least once
and returning home? O

Garey and Johnson [39] use a slightly more restricted version which asks
for a tour visiting each vertex exactly once. We prefer the more general version
above, since to get anywhere from Ithaca and back usually involves at least
two stops in Pittsburgh.

TSP is in NP provided we can argue that optimal tours are short enough
that they can be guessed and verified in polynomial time. Each vertex can be
visited at most n times in an optimal tour, because otherwise we could cut
out a loop and still visit all vertices. We can thus guess a tour of length at
most n? and verify that its total weight is at most .

TSP is NP-hard, since there is a straightforward reduction from Hamil-
tonian Circuit: give all edges unit weight and ask for a TSP tour of weight
n.

Combining arguments from the last several lectures, we have:

Theorem 24.8 The CNF Satisfiability problem reduces via <B, to all the fol-
lowing problems: Knapsack, Partition, Subset Sum, Exact Cover, Bin Pack-
ing, Integer Programming, directed and undirected Hamiltonian Circuit, and
Traveling Salesman.

