
Cornell University, Fall 2016 CS 6820: Algorithms
Lecture notes: Flows and Cuts 7 Sep–12 Sep

Network flows are a structure with many nice applications in algorithms and combi-
natorics. A famous result called the max-flow min-cut theorem exposes a tight relationship
between network flows and graph cuts; the latter is also a fundamental topic in combinatorics
and combinatorial optimization, with many important applications.

These notes introduce the topic of network flows, present and analyze some algorithms
for computing a maximum flow, prove the max-flow min-cut theorem, and present some
applications in combinatorics. There are also numerous applications of these topics elsewhere
in computer science. For example, network flow has obvious applications to routing in
communication networks. Algorithms for computing minimum cuts in graphs have important
but less obvious applications in computer vision. Those applications (along with many other
practical applications of maximum flows and minimum cuts) are beyond the scope of these
notes.

1 Basic Definitions

We begin by defining flows in directed multigraphs. (A multigraph is a graph that is allowed
to have parallel edges, i.e. two or more edges having the same endpoints.)

Definition 1. In a directed multigraph G = (V,E), a flow with source s and sink t (where
s and t are vertices of G) is an assignment of a non-negative value fe to each edge e, called
the “flow on e”, such that for every v 6= s, t, the total flow on edges leaving v equals the
total flow on edges entering v. This equation is called “flow conservation at v”. The value
of the flow, denoted by |f |, is the total amount of flow on edges leaving the source, s.

One can formulate a clean notation for re-expressing this definition using the incidence
matrix of G, which is the matrix B with rows indexed by vertices, and columns indexed by
edges, whose entries are defined as follows.

Bwe =


1 if w is the head of e, i.e. e = (u, v) and w = v

−1 if w is the tail of e, i.e. e = (u, v) and w = u

0 otherwise

For any vertex v let 1v denote the indicator vector of v, i.e. the column vector (with rows
indexed by V) whose entries are defined as follows.

(1v)w =

{
1 if v = w

0 otherwise

In this notation, if we interpret a flow f as a column vector whose rows are indexed by E,
then a vector of non-negative numbers, f , is a flow from s to t if and only if Bf = λ(1t−1s)
for some scalar λ ∈ R, in which case the value of f is given by |f | = λ.

1

A useful interpretation of flows is that “a flow is a weighted sum of source-sink paths and
cycles”.

Lemma 1. For an edge set S let its characteristic vector 1S be the vector in RE whose eth

entry equals 1 if e ∈ S, 0 if e 6∈ S. A vector f ∈ RE is a flow from s to t if and only if f is
equal to a weighted sum (with non-negative weights) of vectors 1S as S ranges over s-t paths,
t-s paths, and directed cycles. The value of f is the combined weight of s-t paths minus the
combined weight of t-s paths in any such weighted-sum decomposition.

Proof. Let R+ denote the set of non-negative real numbers. When S is the edge set of (i) an
s-t path, (ii) a t-s path, or (iii) a directed cycle, we have 1S ∈ R+ and B1S = λS(1t − 1s)
where λS equals 1 in case (i), -1 in case (ii), and 0 in case (iii), respectively. Taking weighted
sums of these identities, this verifies that any non-negative weighted sum of source-sink paths
and cycles is a flow with the stated value.

Conversely, if f is a flow we must prove that it is a non-negative weighted sum of source-
sink paths and cycles. Let E+(f) = {e | fe > 0}. The proof will be by induction on the
number of edges in E+(f). When this number is zero, the lemma holds vacuously, so assume
|E+(f)| > 0. If E+(f) contains an s-t path, a t-s path, or a directed cycle, then let S denote
the edge set of this path or cycle, and let w = min{fe | e ∈ S}. The vector g = f −w1S is a
flow of value |g| = |f | −wλS, and |E+(g)| < |E+(f)|, so by the induction hypothesis we can
decompose g as a weighted sum of s-t paths, t-s paths, and cycles, and |g| is the combined
weight of s-t paths minus the combined weight of t-s paths. The induction step then follows
because f = g + w1S.

To complete the proof we need to show that when |E+(f)| > 0 there is an s-t path, a
t-s path, or a directed cycle contained in E+(f). If E+(f) does not contain a directed cycle
then (V,E+(f)) is a directed acyclic graph with non-empty edge set. As such, it must have
a source vertex, i.e. a vertex u0 with at least one outgoing edge, but no incoming edges.
Construct a path P = u0, u1, . . . , uk starting from u0 and choosing ui, for i > 1, by following
an edge (ui−1, ui) ∈ E+(f). Since E+(f) contains no cycles this greedy path construction
process must terminate at a vertex with no outgoing edges. Flow conservation implies that
every vertex other than s and t which belongs to an edge in E+(f) has both incoming and
outgoing edges. Therefore, the endpoints of P are s and t (in some order) which completes
the proof that E+(f) has either a path joining the source to the sink (in some order) or a
directed cycle.

Definition 2. A flow network is a directed multigraph G = (V,E) together with a non-
negative capacity c(e) for each edge e. A valid flow in a flow network is a flow f in G that
satisfies the capacity constraints fe ≤ c(e) for all edges e. A maximum flow is a valid flow of
maximum value.

Maximum flow turns out to be a versatile problem that encodes many other algorithmic
problems. For example, the maximum bipartite matching in a graph G = (U, V,E) can be
encoded by a flow network with vertex set U ∪ V ∪ {s, t} and with edge set ({s} × U) ∪
E ∪ (V × {t}), all edges having capacity 1. For each edge (u, v) ∈ E, the flow network
contains a three-hop path Pe = 〈s, u, v, t〉, and for any matching M in G one can sum up the
characteristic vectors of the paths Pe (e ∈ M) to obtain a valid flow f such that |f | = |M |.

2

Conversely, any valid flow f satisfying fe ∈ Z for all e is obtained from a matching M via
this construction. As we will see shortly, in any flow network with integer edge capacities,
there always exists an integer-valued maximum flow. Thus, the bipartite maximum matching
problem reduces to maximum flow via the simple reduction given in this paragraph.

The similarity between maximum flow and bipartite maximum matching also extends
to the algorithms for solving them. The most basic algorithms for solving maximum flow
revolve around a graph called the residual graph which is analogous to the directed graph
D(G,M) that we defined when presenting algorithms for the bipartite maximum matching
problem.

Definition 3. Let G = (V,E, c) is a flow network and f a valid flow in G. Let Ē denote a set
containing a directed edge ē for every e ∈ E, whose endpoints are the same as the endpoints
of e but in the opposite order. If e ∈ E and ē ∈ Ē, the residual capacities cf (e), cf (ē) are
defined by

cf (e) = c(e)− fe
cf (ē) = fe.

The residual graph Gf is the flow network Gf = (V,Ef , cf), where Ef is the set of all edges
in E ∪ Ē with positive residual capacity. An augmenting path is a path from s to t in Gf .

To any valid flow h in Gf one can associate the vector π(h) ∈ RE defined by

π(h)e = he − hē.

The vectors π(h) encode all the ways of modifying f to another valid flow in G.

Lemma 2. If f is a valid flow in G and h is a valid flow in the residual graph Gf then
f +π(h) is a valid flow in G. Conversely, every valid flow in G can be expressed as f +π(h)
for some valid flow h in Gf .

Proof. The equation Bh = Bπ(h) follows from the definition of π(h), and implies that π(h)
satisfies the flow conservation equations, hence f + π(h) does as well. The residual capacity
constraints in Gf are designed precisely to guarantee that the value of f +π(h) on each edge
e lies between 0 and c(e), hence f + π(h) is a valid flow in G. Conversely, suppose f̃ is any
valid flow in G. Using the notation x+ to denote max{x, 0} for any real number x, we may
define

he = (f̃e − fe)+ for all e ∈ E
hē = (fe − f̃e)+ for all ē ∈ Ē

and verify that h is a valid flow in Gf satisfying f̃ = f + π(h).

Lemma 3. If f is a valid flow in G, then f is a maximum flow if and only if Gf does not
contain an augmenting path.

3

Proof. If f is not a maximum flow then let f ∗ be any maximum flow and write f ∗ = f+π(h).
Since |f ∗| = |f | + |h| > |f |, we must have |h| > 0. According to Lemma 1, the flow h
decomposes as a weighted sum of vectors 1S where S ranges over s-t paths, t-s paths, and
directed cycles in Gf , and at least one s-t path must have a positive coefficient in this
decomposition because |h| > 0. In particular, this implies that Gf contains an s-t path,
i.e. an augmenting path. Conversely, if Gf contains an augmenting path P , let δ(P) be the
minimum residual capacity of an edge of P . The flow f + δ(P)π(1P) is a valid flow with
value |f |+ δ(P), so f is not a maximum flow.

1.1 Comparison with Other Definitions

The Kleinberg-Tardos textbook assumes that s has no incoming edges and t has no outgoing
edges. In these notes we do not impose any such assumption. Consequently G may contain
a path from t to s, leading to the somewhat counter-intuitive convention that a flow on a
path from t to s is considered to be an s-t flow of negative value. This convention is useful,
for example, in Lemma 3 where it allows us to simply say that if f and f̃ are two s-t flows in
G, then their difference f̃ − f can always be represented by an s-t flow in the residual graph
Gf .

The Kozen textbook represents a flow using a skew-symmetric matrix, whose (u, v) entry
represents the difference fuv− fvu, i.e. the net flow from u to v along edges that join the two
vertices directly. This allows for a beautifully simple formulation of the flow conservation
equations and of the lemma that the difference between any two flows is represented by a flow
in the residual graph. However, when the graph contains a two-cycle comprising edges (u, v)
and (v, u), the representation of a flow as a skew-symmetric matrix eliminates the distinction
between sending zero flow on (u, v) and (v, u) and sending an equal (but non-zero) amount in
both directions. Philosophically, I believe these should be treated as distinct flows so I have
opted for a definition that enables such a distinction. The cost of making this choice is that
some definitions become messier and more opaque, especially those involving the residual
graph and the function π that maps flows in Gf to flows in G.

2 The Max-Flow Min-Cut Theorem

One important corollary of Lemma 3 is the max-flow min-cut theorem, which establishes a
tight relationship between maximum flows and cuts separating the source from the sink. We
first present some definitions involving cuts, and then we present and prove the theorem.

Definition 4 (s-t cut). An s-t cut in a directed graph G = (V,E) with vertices s and t is
a partition of the vertex set V into two subsets S, T such that s ∈ S and t ∈ T . An edge
e = (u, v) crosses the cut (S, T) if u ∈ S and v ∈ T . (Note that edges from T to S do not
cross the cut (S, T), under this definition.) The capacity of cut (S, T), denoted by c(S, T),
is the sum of the capacities of all edges that cross the cut.

Theorem 4 (Max-flow min-cut). For any flow network, the value of any maximum flow is
equal to the capacity of any minimum s-t cut.

4

Proof. Let (S, T) be any s-t cut, and let 1T be the vector in RV whose vth component is 1 if
v ∈ T , 0 if v 6∈ T . The row vector x = 1ᵀ

TB satisfies xe = 1 if e goes from S to T , xe = −1
if e goes from T to S, and xe = 0 otherwise.

For a flow f and two disjoint vertex sets Q,R, let f(Q,R) denote the sum of fe over all
edges e going from Q to R. We have

1ᵀ
TBf = xf = f(S, T)− f(T, S) ≤ c(S, T) (1)

where the last inequality is justified because fe ≤ c(e) for all e from S to T , and fe ≥ 0 for
all e from T to S. Since f is a flow, we have

1ᵀ
TBf = 1ᵀ

T (1t − 1s)|f | = |f |. (2)

Combining equations (1) and (2) yields the conclusion that the value of any flow is bounded
above by the capacity of any s-t cut; in particular, the min-cut capacity is an upper bound
on the maximum flow value.

To prove that this upper bound is tight, first note that in our derivation of the inequal-
ity |f | ≤ c(S, T), the only step that was an inequality (rather than an equation) was the
inequality at the end of line (1). Reviewing our justification for that inequality, one can see
that the two sides are equal if fe = c(e) for all edges e from S to T and fe = 0 for all edges
e from T to S. When f is a maximum flow, we can find a cut (S, T) that satisfies these
properties by applying Lemma 3, which says that there is no s-t path in the residual graph
Gf . Define S to be the set of all vertices reachable from s via a directed path in Gf , and T
to be the complement of S; note that s ∈ S and t ∈ T , so (S, T) is a valid cut. Since Gf

contains no edges from S to T , it must be the case that for each edge e from S to T , the
residual capacity cf (e) is zero (hence fe = c(e)) and for each edge e from T to S, the residual
capacity cf (ē) is zero (hence fe = 0). This confirms that S, T satisfies the conditions for the
left and right sides of (1) to equal one another.

3 Combinatorial Applications

In combinatorics, there are many examples of “min-max theorems” asserting that the mini-
mum of XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-
defined parameters related to some object such as a graph. Often these min-max theorems
have two other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum
of XXX, but the fact that they are equal is usually far from obvious, and in some cases
quite surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum
of XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

5

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:

1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that
Q is also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether prop-
erty P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of this section is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max
relations. For example, many of the more sophisticated ones are derived from the
Matroid Intersection Theorem, which is a topic that we will not be discussing this
semester.

2. Another prolific source of min-max relations, namely LP Duality, has already been
discussed informally this semester, and we will be coming to a proof later on. LP
duality by itself yields statements about continuous optimization problems, but one
can often derive consequences for discrete problems by applying additional special-
purpose arguments tailored to the problem at hand.

3. The “applications” in these notes belong to mathematics (specifically, combinatorics)
but there are many real-world applications of maximum flow algorithms. See Chap-
ter 7 of Kleinberg & Tardos for applications to airline routing, image segmentation,
determining which baseball teams are still capable of getting into the playoffs, and
many more.

3.1 Preliminaries

The combinatorial applications of max-flow frequently rely on an easy observation about
flow algorithms. The following theorem asserts that essentially everything we’ve said about
network flow problems remains valid if some edges of the graph are allowed to have infinite
capacity. Thus, in the following theorem, we define the term flow network to be a directed
graph G = (V,E) with source and sink vertices s, t and edge capacities (ce)e∈E as before
— including the stipulation that the vertex set V is finite — but we allow edge capacities
c(u, v) to be any non-negative real number or infinity. A flow is defined as before, except
that when c(u, v) =∞ it means that there is no capacity constraint for edge (u, v).

Theorem 5. If G is a flow network containing an s-t path made up of infinite-capacity edges,
then there is no upper bound on the maximum flow value. Otherwise, the maximum flow value

6

and the minimum cut capacity are finite, and they are equal. Furthermore, any maximum
flow algorithm that specializes the Ford-Fulkerson algorithm (e.g. Edmonds-Karp or Dinic)
remains correct in the presence of infinite-capacity edges, and its worst-case running time
remains the same.

Proof. If P is an s-t path made up of infinite capacity edges, then we can send an unbounded
amount of flow from s to t by simply routing all of the flow along the edges of P . Otherwise,
if S denotes the set of all vertices reachable from s by following a directed path made up of
infinite-capacity edges, then by hypothesis t 6∈ S. So if we set T = V \ S, then (S, T) is an
s-t cut and every edge from S to T has finite capacity. It follows that c(S, T) is finite, and
the maximum flow value is finite.

We now proceed by constructing a different flow problem Ĝ with the same directed graph
structure finite edge capacities ĉe, and arguing that the outcome of running Ford-Fulkerson
doesn’t change when its input is modified from G to Ĝ. The modified edge capacities in Ĝ
are defined by

ĉ(u, v) =

{
c(u, v) if c(u, v) <∞
c(S, T) + 1 if c(u, v) =∞.

If (S ′, T ′) is any cut in Ĝ then either ĉ(S ′, T ′) > ĉ(S, T) = c(S, T), or else ĉ(S ′, T ′) = c(S ′, T ′);
in particular, the latter case holds if (S ′, T ′) is a minimum cut in Ĝ. To see this, observe
that if ĉ(S ′, T ′) ≤ ĉ(S, T) = c(S, T), then for any u ∈ S ′, v ∈ T ′, we have ĉ(u, v) ≤ c(S, T)
and this in turn implies that ĉ(u, v) = c(u, v) for all u ∈ S ′, v ∈ T ′, and consequently
ĉ(S ′, T ′) = c(S ′, T ′).

Since Ĝ has finite edge capacities, we already know that any execution of the Ford-
Fulkerson algorithm on input Ĝ will terminate with a flow f whose value is equal to the
minimum cut capacity in Ĝ. As we’ve seen, this is also equal to the minimum cut capacity
in G itself, so the flow must be a maximum flow in G itself. Every execution of Ford-Fulkerson
on Ĝ is also a valid execution on G and vice-versa, which substantiates the final claim about
running times.

3.2 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s, t in a graph. Menger’s Theorem equates the maximum number of
such paths with the minimum number of edges or vertices that must be deleted from G in
order to separate s from t.

Definition 5. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. Two s − t paths P, P ′ are edge-disjoint if there is no edge that belongs to both paths.
They are vertex-disjoint if there is no vertex that belongs to both paths, other than s and t.
(This notion is sometimes called internally-disjoint.)

Definition 6. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. An s − t edge cut is a set of edges C such that every s − t path contains an edge of
C. An s− t vertex cut is a set of vertices U , disjoint from {s, t}, such that every s− t path
contains a vertex of U .

7

Theorem 6 (Menger’s Theorem). Let G be a (directed or undirected) graph and let s, t be
two distinct vertices of G. The maximum number of edge-disjoint s − t paths equals the
minimum cardinality of an s− t edge cut, and the maximum number of vertex-disjoint s− t
paths equals the minimum cardinality of an s − t vertex cut. Furthermore the maximum
number of disjoint paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work
with directed or undirected graphs and whether we work with edge-disjointness or vertex-
disjointness. In all four cases, it is easy to see that the minimum cut constitutes an upper
bound on the maximum number of disjoint paths, since each path must intersect the cut
in a distinct edge/vertex. In all four cases, we will prove the reverse inequality using the
max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining c(u, v) = 1 for all directed edges (u, v) ∈ E(G); if G is undirected then we simply set
c(u, v) = c(v, u) = 1 for all (u, v) ∈ E(G). The theorem now follows from two claims: (A) an
integer s− t flow of value k implies the existence of k edge-disjoint s− t paths and vice versa;
(B) a cut of capacity k implies the existence of an s− t edge cut of cardinality k and vice-
versa. To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint
paths by finding one s − t path consisting of edges (u, v) such that f(u, v) = 1, setting the
flow on those edges to zero, and iterating on the remaining flow; the transformation from
k disjoint paths to a flow of value k is even more straightforward. To prove (B), from an
s − t edge cut C of cardinality k we get an s − t cut of capacity k by defining S to be all
the vertices reachable from s without crossing C; the reverse transformation is even more
straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices vin, vout, with c(vin, vout) = 1
and c(vout, vin) = 0. Every edge (u, v) in G is transformed into an edge from uout to vin with
infinite capacity. In the undirected case we also create an edge of infinite capacity from vout

to uin. Now we solve max-flow with source sout and sink tin. As before, we need to establish
two claims: (A) an integer sout− tin flow of value k implies the existence of k vertex-disjoint
s− t paths and vice versa; (B) a cut of capacity k implies the existence of an sout− tin vertex
cut of cardinality k and vice-versa. Claim (A) is established exactly as above. Claim (B) is
established by first noticing that in any finite-capacity cut, the only edges crossing the cut
must be of the form (vin, vout); the set of all such v then constitutes the s− t vertex cut.

3.3 The König-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A vertex cover of a graph is a vertex set A such that every edge has at least
one endpoint in A. Clearly the cardinality of a maximum matching cannot be greater than
the cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct
element of the vertex cover.) The König-Egervary Theorem asserts that in bipartite graphs,
these two parameters are always equal.

8

Theorem 7 (König-Egervary). If G is a bipartite graph, the cardinality of a maximum
matching in G equals the cardinality of a minimum vertex cover in G.

Proof. The proof technique illustrates a very typical way of using network flow algorithms:
we make a bipartite graph into a flow network by attaching a “super-source” to one side and
a “super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex
sets X, Y , and edge set E, then we define a flow network Ĝ = (X ∪ Y ∪ {s, t}, c, s, t) where
the following edge capacities are nonzero, and all other edge capacities are zero:

c(s, x) = 1 for all x ∈ X
c(y, t) = 1 for all y ∈ Y

c(x, y) =∞ for all (x, y) ∈ E

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The
set of edges (x, y) such that x ∈ X, y ∈ Y, f(x, y) = 1 constitutes a matching in G whose
cardinality is equal to |f |. Conversely, any matching in G gives rise to a flow in the obvious
way. Thus the maximum flow value equals the maximum matching cardinality.

If (S, T) is any finite-capacity s − t cut in this network, let A = (X ∩ T) ∪ (Y ∩ S).
The set A is a vertex cover in G, since an edge (x, y) ∈ E with no endpoint in A would
imply that x ∈ S, y ∈ T, c(x, y) =∞ contradicting the finiteness of c(S, T). The capacity of
the cut is equal to the number of edges from s to T plus the number of edges from S to t
(no other edges from S to T exist, since they would have infinite capacity), and this sum is
clearly equal to |A|. Conversely, a vertex cover A gives rise to an s − t cut via the reverse
transformation, and the cut capacity is |A|.

3.4 Hall’s Theorem

Theorem 8. Let G be a bipartite graph with vertex sets X, Y and edge set E. Assume
|X| = |Y |. For any W ⊆ X, let Γ(W) denote the set of all y ∈ Y such that (w, y) ∈ E for at
least one w ∈ W . In order for G to contain a perfect matching, it is necessary and sufficient
that each W ⊆ X satisfies |Γ(W)| ≥ |W |.

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that
|Γ(W)| ≥ |W | for all W . Transform G into a flow network Ĝ as in the proof of the König-
Egervary Theorem. If there is a integer flow of value |X| in Ĝ, then the edges (x, y) such that
x ∈ X, y ∈ Y, f(x, y) = 1 constitute a perfect matching in G and we are done. Otherwise,
there is a cut (S, T) of capacity k < n. We know that

|X ∩ T |+ |Y ∩ S| = k < n = |X ∩ T |+ |X ∩ S|

from which it follows that |Y ∩ S| < |X ∩ S|. Let W = X ∩ S. The set Γ(W) is contained
in Y ∩ S, as otherwise there would be an infinite-capacity edge crossing from S to T . Thus,
|Γ(W)| ≤ |Y ∩S| < |W |, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.

9

3.5 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there
is no path passing through both v and w, and define an antichain to be a set of pairwise
incomparable vertices.

Theorem 9. In any finite directed acyclic graph G, the maximum cardinality of an antichain
equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce
a directed graph G∗ called the transitive closure of G. This has same vertex set V , and its
edge set E∗ consists of all ordered pairs (v, w) such that v 6= w and there exists a path in
G from v to w. Some basic facts about the transitive closure are detailed in the following
lemma.

Lemma 10. If G is a directed acyclic graph, then its transitive closure G∗ is also acyclic. A
vertex set A constitutes an independent set in G∗ (i.e. no edge in E∗ has both endpoints in
S) if and only if A is an antichain in G. A sequence of vertices v0, v1, . . . , vk constitutes a
path in G∗ if and only if it is a subsequence of a path in G. For all k, G∗ can be partitioned
into k or fewer paths if and only if G can be covered by k or fewer paths.

Proof. The equivalence of antichains in G and independent sets in G∗ is a direct consequence
of the definitions. If v0, . . . , vk is a directed walk in G∗ — i.e., a sequence of vertices such
that (vi−1, vi) is an edge for each i = 1, . . . , k — then there exist paths Pi from vi−1 to vi
in G, for each i. The concatenation of these paths is a directed walk in G, which must be
a simple path (no repeated vertices) since G is acyclic. This establishes that v0, . . . , vk is
a subsequence of a path in G, as claimed, and it also establishes that v0 6= vk, hence G∗

contains no directed cycles, as claimed. Finally, if G∗ is partitioned into k paths then we
may apply this construction to each of them, obtaining k paths that cover G. Conversely,
given k paths P1, . . . , Pk that cover G, then G∗ can be partitioned into paths P ∗1 , . . . , P

∗
k

where P ∗i is the subsequence of Pi consisting of all vertices that do not belong to the union
of P1, . . . , Pi−1.

Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem 9. Define a flow network Ĝ = (W, c, s, t) as follows. The vertex set W
contains two special vertices s, t as well as two vertices xv, yv for every vertex v ∈ V (G). The
following edge capacities are nonzero, and all other edge capacities are zero.

c(s, xv) = 1 for all v ∈ V
c(xv, yw) =∞ for all (v, w) ∈ E∗

c(yw, t) = 1 for all w ∈ V

For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let
F denote the set of edges (v, w) ∈ E∗ such that f(xv, yw) = 1. The capacity and flow
conservation constraints enforce some degree constraints on F : every vertex of G∗ has at

10

most one incoming edge and at most one outgoing edge in F . In other words, F is a union
of disjoint paths and cycles. However, since G∗ is acyclic, F is simply a union of disjoint
paths in G∗. In fact, if a vertex doesn’t belong to any edge in F , we will describe it as a
path of length 0 and in this way we can regard F as a partition of the vertices of G∗ into
paths. Conversely, every partition of the vertices of G∗ into paths translates into a flow in
Ĝ in the obvious way: for every edge (v, w) belonging to one of the paths in the partition,
send one unit of flow on each of the edges (s, xv), (xv, yw), (yw, t).

The value of f equals the number of edges in F . Since F is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F |+ p(F). Thus, if the maximum flow value in Ĝ equals k, then the minimum number
of paths in a path-partition of G∗ equals n − k, and Lemma 10 shows that this is also the
minimum number of paths in a path-covering of G. By max-flow min-cut, we also know that
the minimum cut capacity in Ĝ equals k, so to finish the proof, we must show that an s− t
cut of capacity k in Ĝ implies an antichain in G — or equivalently (again using Lemma 10)
an independent set in G∗ — of cardinality n− k.

Let S, T be an s− t cut of capacity k in Ĝ. Define a set of vertices A in G∗ by specifying
that v ∈ A if xv ∈ S and yvinT . If a vertex v does not belong to A then at least one of
the edges (s, xv) or (yv, t) crosses from S to T , and hence there are at most k such vertices.
Thus |A| ≥ n−k. Furthermore, there is no edge in G∗ between elements of A: if (v, w) were
any such edge, then (v, w′) would be an infinite-capacity edge of Ĝ crossing from S to T .
Hence there is no path in G between any two elements of A, i.e. A is an antichain.

4 The Ford-Fulkerson Algorithm

Lemma 3 constitutes the basis for the Ford-Fulkerson algorithm, which computes a maximum
flow iteratively, by initializing f = 0 and repeatedly replacing f with f + δ(P)π(1P) where
P is an augmenting path in Gf , and δ(P) is the minimum residual capacity of an edge in P .
The algorithm terminates when Gf no longer contains an augmenting path, at which point
Lemma 3 guarantees that f is a maximum flow.

Algorithm 1 FordFulkerson(G)

1: f ← 0; Gf ← G
2: while Gf contains an s-t path P do
3: Let P be one such path.
4: Let δ(P) = min{cf (e) | e ∈ P}.
5: f ← f + δ(P)π(1P) // Augment f using P .
6: Update Gf .
7: end while
8: return f

Theorem 11. In any flow network with integer edge capacities, any execution of the Ford-
Fulkerson algorithm terminates and outputs an integer-valued maximum flow, f ∗, after at
most |f ∗| iterations of the main loop.

11

Proof. At any time during the algorithm’s execution, the residual capacities cf are all in-
tegers; this can easily be seen by induction on the number of iterations of the main loop,
the key observation being that the quantity δ(P) computed during each loop iteration must
always be an integer.

It follows that |f | increases by at least 1 during each loop iteration, so the algorithm
terminates after at most |f ∗| loop iterations, where f ∗ denotes the output of the algorithm.
Finally, Lemma 3 ensures that f ∗ must be a maximum flow because, by the algorithm’s
termination condition, its residual graph has no augmenting path.

Each iteration of the Ford-Fulkerson main loop can be implemented in linear time, i.e. the
time required to search for the augmenting path P inGf (using BFS or DFS) and to construct
the new residual graph after updating f . For the sake of simplicity, we will express the
running time of each loop iteration as O(m) rather than O(m+n), which can be justified by
making a standing assumption that each vertex of the graph is incident to at least one edge,
hence m ≥ n/2. (If the standing assumption is violated, isolated vertices can be removed
using a trivial O(n) preprocessing step, which adds O(n) to the running time of every
algorithm considered in these notes.) The benefit of the standing assumption is that it leads
to simpler and more readable running time bounds for the maximum-flow algorithms we are
analyzing. In integer-capacitated graphs, we have seen that the Ford-Fulkerson algorithm
runs in at most |f ∗| linear-time iterations, where |f ∗| is the value of a maximum flow, hence
the algorithm’s running time is O(m|f ∗|).

5 The Edmonds-Karp and Dinitz Algorithms

The Ford-Fulkerson algorithm’s running time is pseudopolynomial, but not polynomial. In
other words, its running time is polynomial in the magnitudes of the numbers constituting
the input (i.e., the edge capacities) but not polynomial in the number of bits needed to
describe those numbers. To illustrate the difference, consider a flow network with vertex set
{s, t, u, v} and edge set {(s, u), (u, t), (s, v), (v, t), (u, v)}. The capacities of the edges are

c(s, u) = c(u, t) = c(s, v) = c(v, t) = 2n, c(u, v) = 1.

The maximum flow in this network sends 2n units on each of the paths 〈s, u, t〉 and 〈s, v, t〉,
and if the Ford-Fulkerson algorithm chooses these as its first two augmenting paths, it
terminates after only two iterations. However, it could alternatively choose 〈s, u, v, t〉 as its
first augmenting path, sending only one unit of flow on the path. This results in adding the
edge (v, u) to the residual graph, at which point it becomes possible to send one unit of flow
on the augmenting path 〈s, u, v, t〉. This process iterates 2n times.

A more sophisticated example shows that in a flow network whose edge capacities are
irrational numbers, the Ford-Fulkerson algorithm may run through its main loop an infinite
number of times without terminating.

In this section we will present two maximum flow algorithms with strongly polynomial
running times. This means that if we count each arithmetic operation is consuming only one
unit of running time (regardless of the number of bits of precision of the numbers involved)

12

then the running time is bounded by a polynomial function of the number of vertices and
edges of the network.

5.1 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm refines the Ford-Fulkerson algorithm by always choosing the
augmenting path with the smallest number of edges.

Algorithm 2 EdmondsKarp(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let P be an s− t path in Gf with the minimum number of edges.
4: f ← f + δ(P)π(1P) // Augment f using P .
5: Update Gf

6: end while
7: return f

To begin our analysis of the Edmonds-Karp algorithm, note that the s-t path in Gf with
the minimum number of edges can be found in O(m) time using breadth-first search. Once
path P is discovered, it takes only O(n) time to augment f using P and O(n) time to update
Gf , so we see that one iteration of the while loop in EdmondsKarp(G) requires only O(m)
time. However, we still need to figure out how many iterations of the while loop could take
place, in the worst case.

To reason about the maximum number of while loop iterations, we will assign a distance
label d(v) to each vertex v, representing the length of the shortest path from s to v in Gf .
We will show that d(v) never decreases during an execution of EdmondsKarp(G). Recall
that the same method of reasoning was instrumental in the running-time analysis of the
Hopcroft-Karp algorithm.

Any edge (u, v) in Gf must satisfy d(v) ≤ d(u) + 1, since a path of length d(u) + 1 can
be formed by appending (u, v) to a shortest s-u path in Gf . Call the edge advancing if
d(v) = d(u) + 1 and retreating if d(v) ≤ d(u). Any shortest augmenting path P in Gf is
composed exclusively of advancing edges. Let Gf and G̃f denote the residual graph before
and after augmenting f using P , respectively, and let d(v), d̃(v) denote the distance labels
of vertex v in the two residual graphs. Every edge (u, v) in G̃f is either an edge of Gf or the
reverse of an edge of P ; in both cases the inequality d(v) ≤ d(u) + 1 is satisfied. Therefore,
on any path in G̃f the value of d increases by at most one on each hop of the path, and
consequently d̃(v) ≥ d(v) for every v. This proves that the distance labels never decrease,
as claimed earlier.

When we choose augmenting path P in Gf , let us say that edge e ∈ E(Gf) is a bottleneck
edge for P if it has the minimum residual capacity of any edge of P . Notice that when
e = (u, v) is a bottleneck edge for P , then it is eliminated from Gf after augmenting f using
P . Suppose that d(u) = i and d(v) = i + 1 when this happens. In order for e to be added
back into Gf later on, edge (v, u) must belong to a shortest augmenting path, implying

13

d(u) = d(v) + 1 ≥ i + 2 at that time. Thus, the total number of times that e can occur as
a bottleneck edge during the Edmonds-Karp algorithm is at most n/2. There are 2m edges
that can potentially appear in the residual graph, and each of them serves as a bottleneck
edge at most n/2 times, so there are at most mn bottleneck edges in total. In every iteration
of the while loop the augmenting path has at least one bottleneck edge, so there are at most
mn while loop iterations in total. Earlier, we saw that every iteration of the loop takes
O(m) time, so the running time of the Edmonds-Karp algorithm is O(m2n).

5.2 The Dinitz Algorithm

Similar to the way that the Hopcroft-Karp algorithm improves the running time for finding
a maximum matching in a graph by finding a maximal set of shortest augmenting paths all
at once, there is a maximum-flow algorithm due to Dinitz that improves the running time
of the Edmonds-Karp algorithm by finding a so-called blocking flow in the residual graph.

Definition 7. If G is a flow network, f is a flow, and h is a flow in the residual graph Gf ,
then h is called a blocking flow if every shortest augmenting path in Gf contains at least one
edge that is saturated by h, and every edge e with he > 0 belongs to a shortest augmenting
path.

Algorithm 3 EdmondsKarp(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let h be a blocking flow in Gf .
4: f ← f + π(h)
5: Update Gf

6: end while
7: return f

Later we will specify how to compute a blocking flow. For now, let us focus on bounding
the number of iterations of the main loop. As in the analysis of the Edmonds-Karp algorithm,
the distance d(v) of any vertex v from the source s can never decrease during an execution
of Dinitz’s algorithm. Furthermore, the length of the shortest path from s to t in Gf must
strictly increase after each loop iteration: the edges (u, v) which are added to Gf at the end
of the loop iteration satisfy d(v) ≤ d(u) (where d(·) refers to the distance labels at the start
of the iteration) so any s-t path of length d(t) in the new residual graph would have to be
composed exclusively of advancing edges which existed in the old residual graph. However,
any such path must contain at least one edge which was saturated by the blocking flow,
hence deleted from the residual graph. Therefore, each loop iteration strictly increases d(t)
and the number of loop iterations is bounded above by n.

The algorithm to compute a blocking flow explores the subgraph composed of advancing
edges in a depth-first manner, repeatedly finding augmenting paths.

14

Algorithm 4 BlockingFlow(Gf)

1: h← 0
2: Let G′ be the subgraph composed of advancing edges in Gf .
3: Initialize c′(e) = cf (e) for each edge e in G′.
4: Initialize stack with 〈s〉.
5: repeat
6: Let u be the top vertex on the stack.
7: if u = t then
8: Let P be the path defined by the current stack. // Now augment h using P .
9: Let δ(P) = min{c′(e) | e ∈ P}.
10: h← h+ δ(P)1P .
11: c′(e)← c′(e)− δ(P) for all e ∈ P .
12: Delete edges with c′(e) = 0 from G′.
13: Let (u, v) be the newly deleted edge that occurs earliest in P .
14: Truncate the stack by popping all vertices above u.
15: else if G′ contains an edge (u, v) then
16: Push v onto the stack.
17: else
18: Delete u and all of its incoming edges from G′.
19: Pop u off of the stack.
20: end if
21: until stack is empty
22: return h

The block of code that augments h using P is called at most m times (each time results
in the deletion of at least one edge) and takes O(n) steps each time, so it contributes O(mn)
to the running time of BlockingFlow(Gf). At most n vertices are pushed onto the stack
before either a path is augmented or a vertex is deleted, so O(mn) time is spent pushing
vertices onto the stack. The total work done initializing G′, as well as the total work done
deleting vertices and their incoming edges, is bounded by O(m). Thus, the total running
time of BlockingFlow(Gf) is bounded by O(mn), and the running time over Dinitz’s
algorithm overall is bounded by O(mn2).

A modification of Dinitz’s algorithm using fancy data structures achieves running time
O(mn log n). The preflow-push algorithm, presented in Section 7.4 of Kleinberg-Tardos, has
a running time of O(n3). The fastest known strongly-polynomial algorithm, due to Orlin,
has a running time of O(mn). There are also weakly polynomial algorithms for maximum
flow in integer-capacitated networks, i.e. algorithms whose running time is polynomial in the
number of vertices and edges, and the logarithm of the largest edge capacity, U . The fastest
such algorithm, due to Lee and Sidford, has a running time of O(m

√
n poly(log n, logU)).

15

	Basic Definitions
	Comparison with Other Definitions

	The Max-Flow Min-Cut Theorem
	Combinatorial Applications
	Preliminaries
	Menger's Theorem
	The König-Egervary Theorem
	Hall's Theorem
	Dilworth's Theorem

	The Ford-Fulkerson Algorithm
	The Edmonds-Karp and Dinitz Algorithms
	The Edmonds-Karp Algorithm
	The Dinitz Algorithm

