
CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 9: Feb 20, 2025

Lecturer: Eshan Chattopadhyay Scribe: Noam Ringach

1 Decision Trees

Recall our notation that decision trees have size DTsize and depth DTdepth, and that these are
complexity measures we can associate with a boolean function f : {−1, 1}n → {−1, 1} by consid-
ering the smallest decision tree computing f . Using these complexity measures, we will bound the
Fourier tail of f .

Definition 1.1. Recall the Fourier level and Fourier tail definitions.

W k[f] =
∑
S⊆[n]
|S|=k

f̂(S)2

W≥k[f] =
∑
S⊆[n]
|S|≥k

f̂(S)2

Claim 1.2. If DTdepth(f) = d, then W≥d+1[f] = 0. In other words, deg(f) ≤ d.

Proof. Let T be the decision tree computing f with depth(T) ≤ d. We’re going to write all paths
down the decision tree as a monomial. That is, since every node in a decision tree is labeled by
some xi, if the path taken from the root to some leaf is (xi1 , xi2 , . . . , xid), we would consdier the
monomial xi1xi2 · · ·xid . Let P = {all root to leaf paths in T}. So we can write

f(x) =
∑
P∈P

ℓP · 1P (x)

where ℓP is the label of the leaf at the end of P , and 1P (x) is 1 if and only if P is the path taken
when x is given as an input to f and 0 otherwise. This decomposition works because only one
indicator will ever be 1 while the rest are 0 since all paths are unique (we’re in a tree), and we’re
giving the correct value to that path.

Now that we’ve decomposed f in this way, we can focus on the Fourier decomposition of 1P (x).
Let b1,P , . . . , bd,P be the edge labels given by P (we assume wlog that P uses d edges). The condition

for 1P (x) then is 1P (x) = (xi1,P = b1,P) ∧ (xi2,P = b2,P) ∧ · · · ∧ (xid,P = bd,P) =
∏d

j=1

(
1+xij,P

bj,P

2

)
where i1,P , . . . , id,P are the indices of the d variables used along the path of P . Therefore,

f(x) =
∑
P∈P

ℓP ·
d∏

j=1

(
1 + xij,P bj,P

2

)
.

From this we see that there is no monomial with degree more than d, so deg(f) ≤ d, as claimed.

Next we claim a similar result but for the size of a decision tree.

Claim 1.3. If DTsize(f) = s, then W≥k+1[f] ≤ 4ε where k = log(s/ε).

1

Lecture 9: Feb 20, 2025 2

Proof. Well, we only really know how to do one thing, which is to argue about the depth of a
decision tree, so we can try to do a similar argument here where we limit the depth of the decision
tree by ignoring long paths. Suppose T computes f with size(T) = s. Define T ′ to be the same as
T except with any path of depth > k truncated with a leaf label of −1. Therefore, by our previous
claim we know that W≥k+1[T ′] = 0 (here we are overloading notation by letting T ′ itself be the
function represented by the tree T ′).

This is close to what we want, but we unfortunately have that T ̸= T ′ unless T already has
depth at most k. How far is T from T ′? We can compute

Pr
x∼{−1,1}n

[T ′(x) ̸= T (x)] ≤ s

2k

since there are at most s leaves that we cut off by truncating and getting to such a path requires
taking a path of length k which has probability 1

2k
, so we just union bound over all such paths.

Hence, by assumption that k = log(s/ε), we get Prx∼{−1,1}n [T
′(x) ̸= T (x)] ≤ ε.

Now let’s consider the error function E : {−1, 1}n → R where E(x) = T ′(x)− T (x).

Observation 1.4. Observe that W≥k+1[E] = W≥k+1[T] since deg(T ′) ≤ k so the degree ≥ k + 1
coefficients of E only come from T . We’ll formally prove this below.

Proof of observation. By construction, for any S ⊆ [n] with |S| ≥ k + 1, we have Ê(S) = −f̂(S).
And by Parseval we have ∥E∥22 =

∑
S⊆[n] Ê(S)2. Therefore

E
x∼{−1,1}n

[(T (s)− T ′(x))2] ≤ 4ε,

which bounds all Fourier coefficients, implying that W≥k+1[E] ≤ 4ε.

Noticing that T (x) = T ′(x)− E(x) completes the proof.

2 PAC (Probably Approximately Correct) Learning Application

We now focus on PAC learning and whether it’s possible to estimate Fourier coefficients efficiently.
First, we formally define PAC learning:

Definition 2.1 (PAC Learning). We’re given a concept class, a family of boolean functions, F
and one of two possible modesl for getting information about a function f ∈ F . In the random
example model, we get {(x(i), f(x(i))}i=1,2,... where we’re guaranteed that each x(i) ∼ {−1, 1}n.
Alternatively, we can consider the query model where we get to choose the x(i)’s (adaptively), which
is clearly easier to learn.

The goal is to create a randomized algorithm A that outputs a function h : {−1, 1}n → {−1, 1}
called our hypothesis. We do not require that h ∈ F (if h ∈ F , then this is called proper learning),
only that with probability 1− δ (over the randomness of A) for some small δ > 0, we get

Pr
x∼{−1,1}n

[h(x) = f(x)] ≥ 1− ε.

A natural question to ask is whether functions with small Fourier tails are easy to learn. The
following theorem says yes!

Theorem 2.2 (Low degree algorithm). Suppose F is such that for any f ∈ F , W≥k[f] ≤ ε. Then
F is PAC learnable in the random example model in time poly(nk, 1/ε, log(1/δ)).

Lecture 9: Feb 20, 2025 3

Corollary 2.3. Size s decision trees are learnable in poly(nlog(s/ε), 1/ε, log(1/δ)) time.

The key ingredient to the low degree algorithm is the algorithm FOURIER.

Definition 2.4. FOURIER : 2[n] → R is an algorithm given access to random examples (x(i), f(x(i)))
for x(i) ∼ {−1, 1}n with the goal of approximating f̂(S) to accuracy ε with probability 1− δ.

Algorithm:

1. Get t samples {x(i), f(x(i))}ti=1

2. Compute the empirical mean f̂(S) = 1
t

(∑t
i=1 f(x

(i)) · χS(x
(i))

)
To prove our algorithm works, we will need Hoeffding’s inequality.1 We state the specific version

we need here.

Lemma 2.5 (Hoeffding’s Inequality). Let X1, . . . ,Xt be independent random variables taking val-
ues in [−1, 1] such that for all i ∈ [t] we have µ = E[Xi]. Then

Pr

[∣∣∣∣∣1t
t∑

i=1

Xi − µ

∣∣∣∣∣ > ε

]
≤ 2e−Ω(tε2)

We can now prove our desired claim.

Claim 2.6. The algorithm for FOURIER works as claimed with accuracy ε with probability 1− δ.

Proof. Let yi = f(x(i))χS(x
(i)) for i ∈ [t], so Ex(i)∼{−1,1}n [yi] = f̂(S). Then we can use Hoeffding’s

inequality to compute

Pr

[∣∣∣∣∣1t
t∑

i=1

yi − f̂(S)

∣∣∣∣∣ > ε

]
≤ 2e−Ω(tε2),

meaning that t = O
(

1
ε2

log(1/δ)
)
.

In order to prove Theorem 2.2, all we need to do is union bound over all low degree S.

1The proof of Hoeffding’s inequality follows that of Chernoff’s bound, which can be found in the Lecture notes for
CS 4850, and a specific proof of Hoeffding’s inequality can be found in its Wikipedia page

https://www.cs.cornell.edu/courses/cs4850/2022sp/lectures/notes/cs4850-2022-03-11.pdf
https://www.cs.cornell.edu/courses/cs4850/2022sp/lectures/notes/cs4850-2022-03-11.pdf
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#Proof

	Decision Trees
	PAC (Probably Approximately Correct) Learning Application

