CS 6817: Special Topics in Complexity Theory

Spring 2025

Lecture 7: Feb 11, 2025

Lecturer: Eshan Chattopadhyay

Scribe: Mohit Gurumukhani

Today, we will study noise stability and its applications.

1 Recap from Previous Lecture

Recall the definition of noisy distribution:

Definition 1.1 (Noisy distribution). Given $\rho \in [-1,1]$ and $x \in \{-1,1\}^n$, define the noisy distribution with noise parameter ρ as $y \sim N_{\rho}(x)$. To sample y, independently for each coordinate $1 \leq i \leq n$, let $y_i = x_i$ with probability $\frac{1}{2} + \frac{\rho}{2}$ and $y_i = -x_i$ with probability $\frac{1}{2} - \frac{\rho}{2}$.

Thus, if $\rho = 1$, then y always equals x, when $\rho = 0$, y is a truly random string and if y = -1, it always equals -x.

Using standard concentration bounds, we see that:

Claim 1.2. For any $\rho \in [-1,1]$, and $x \in \{-1,1\}^n$: with high probability $\Delta(x, N_{\rho}(x))$ (the Hamming distance) is $(\frac{1}{2} - \frac{\rho}{2}) n \pm O(\sqrt{n})$.

Recall the definition of the noise operator.

Definition 1.3 (Noise Operator). For $\rho \in [-1,1]$, $f : \{-1,1\}^n \to \mathbb{R}$, define the noise operator of $f, T_{\rho}(f) : \{-1,1\}^n \to \mathbb{R}$ as follows:

$$T_{\rho}f(x) = \mathbb{E}_{y \sim N_{\rho}}[f(y)].$$

We also derived the following Fourier representation for $T_{\rho}f(x)$:

$$T_{\rho}f(x) = \sum_{S \subset [n]} \hat{f}(S) \mathbb{E}_{y \sim N_{\rho}(x)}[\chi_S(y)] = \sum \rho^{|S|} \hat{f}(S) \chi_S(x).$$

Using the noise operator, we defined the noise stability of a function as follows:

Definition 1.4 (Noise Stability). For $f : \{-1, 1\}^n \to \mathbb{R}$ and $\rho \in [-1, 1]$, we define noise stability of f as

$$NS_{\rho}(f) = \langle f, T_{\rho}f \rangle.$$

In the previous lecture, we saw:

Claim 1.5. If $f : \{-1, 1\}^n \to \{-1, 1\}$, then

$$NS_{\rho}(f) = 2 \Pr_{x \sim \{-1,1\}^n, y \sim N_{\rho}(x)} [f(x) = f(y)] - 1.$$

Using Plancherel's theorem and definition of noise stability, we obtained the following value for noise stability of f in terms of Fourier expansion of f.

Claim 1.6.

$$NS_{\rho}(f) = \sum \rho^{|S|} \hat{f}(S)^2.$$

2 Properties of Noise Stability

Question 1. How does NS_{ρ} change with ρ ?

To compute this, we take derivative of $NS_{\rho}(f)$ with respect to ρ :

$$\frac{d}{d\rho}NS_{\rho}(f) = \sum_{S \subset [n]} |S|\rho^{|S|-1}\hat{f}(S)^2.$$

We see that at $\rho = 1$, this derivative equals

$$\frac{d}{d\rho}NS_{\rho}(f)|_{\rho=1} = \sum |S|\hat{f}(S)^2$$

We recognize from previous lectures that the last expression equals the the total influence of f. Hence,

$$\frac{d}{d\rho}NS_{\rho}(f)|_{\rho=1} = I(f)$$

One way to interpret this is to recall that at $\rho = 1$, y equals x. So, the rate at which y deviates slightly away from x, on average, is exactly captured by the total influence of f.

Question 2. Which function f maximizes NS_{ρ} for a given ρ ?

Since $NS_{\rho}(f) = 2 \operatorname{Pr}_{x \sim \{-1,1\}^n, y \sim N_{\rho}(x)}[f(x) = f(y)] - 1$, we see that this value can be at most 1. We easily see that for constant functions $f \equiv 1$ or $f \equiv -1$, the noise stability is exactly 1 for all values ρ .

This is a bit unsatisfactory conclusion. So, we instead slightly modify our question to ask:

Question 3. Which balanced function f maximizes NS_{ρ} for a given ρ ?

To help answer this question, lets first take a detour and define and study spectral distribution.

2.1 Spectral Distribution

Recall that if f is boolean valued, i.e., $f: \{-1, 1\}^n \to \{-1, 1\}$, then

$$\sum_{S \subset [n]} \hat{f}(S)^2 = 1$$

We can naturally define the spectral distribution S associated with f as follows:

Definition 2.1 (Spectral Distribution). For $f : \{-1,1\}^n \to \{-1,1\}$, define the spectral distribution $\mathcal{S}_f \sim 2^{[n]}$ associated with f as:

$$\forall T \subset [n], \Pr[\mathcal{S}_f = T] = \hat{f}(T)^2.$$

We will often just write S instead of S_f for notational convenience.

We can find expressions for various properties associated with f in terms of the spectral distribution of f. For instance:

Claim 2.2. For $f : \{-1, 1\}^n \to \{-1, 1\}$, the expected size of a set sampled from S_f is the total influence of f. Formally:

$$\mathbb{E}_{T \sim \mathcal{S}_f}[|T|] = I(f).$$

Proof. Both sides equal $\sum_{T \subset [n]} |T| \hat{f}(T)^2$.

Here's another example:

Claim 2.3. For $f : \{-1,1\}^n \to \{-1,1\}$, for a set T sampled from S_f , the expected value of $\rho^{|T|}$ equals $NS_{\rho}(f)$. Formally:

$$\mathbb{E}_{T \sim \mathcal{S}_f}[\rho^{|T|}] = NS_\rho(f).$$

Proof. Both sides equal $\sum_{T \subset [n]} \rho^{|T|} \hat{f}(T)^2$.

2.2 Maximizing Noise Stability for Balanced Functions

Recall from above that

$$NS_{\rho}(f) = \mathbb{E}_{T \sim \mathcal{S}_f}[\rho^{|T|}].$$

Since f is balanced, we know that $\mathbb{E}[f] = 0$. So,

$$\Pr_{T \sim \mathcal{S}_f}[T = \emptyset] = \hat{f}(\emptyset)^2 = \mathbb{E}[f]^2 = 0$$

This implies

$$\mathbb{E}_{T \sim \mathcal{S}_f}[\rho^{|T|}] \le \rho,$$

since $|T| \ge 1$. Hence, for a balanced function, $NS_{\rho}(f) \le \rho$. We also see that equality is achieved above iff the balanced function has all its mass on level 1, i.e., $\hat{f}(T) \ne 0 \iff |T| = 1$. This implies f must be of the form

$$f(x) = \sum_{i=1}^{n} a_i x_i.$$

where $a_1, \ldots, a_n \in \mathbb{R}$.

Since we are interested in boolean valued f, it is not obvious what sets of values a_i make f boolean. We claim that this happens whenever f is the dictator function or the negation of the dictator function. Formally:

Theorem 2.4. Let $f : \{-1, 1\}^n \to \{-1, 1\}$ be such that there exist $a_1, \ldots, a_n \in \mathbb{R}$ so that $f(x) = \sum_{i=1}^n a_i x_i$. Then f must be the dictator function or the negation of the dictator function, i.e. $f = \pm x_j$ for some $j \in [n]$.

Proof. We see that $f(1^n) = \sum_i a_i \in \{-1, 1\}$. Then consider, $f(1^{n-1}(-1)) = f(1^n) - 2a_n \in \{-1, 1\}$. This implies that $a_n \in \{-1, 0, 1\}$. By symmetry, this holds for all a_j for $j \in [n]$. Let $y \in \{-1, 1\}^n$ be such that for $i \in [n]$, $y_i = \operatorname{sign}(a_i)$. Then, $f(y) = \sum_i |a_i| \in \{-1, 1\}$. This implies there exists exactly one $j \in [n]$ such that $a_j \in \{-1, 1\}$ and for $k \in [n] \setminus \{j\}$, $a_k = 0$ as desired.

3 Condorcet Elections and Arrow's Theorem

Consider the setting of 3 candidates say a, b, c (can also consider more candidates) and n voters. Each voter ranks their preference among a, b, c such as say b > a > c or c > b > a. Given the votes, we generate 3 strings: $x, y, z \in \{-1, 1\}^n$ that encode whether voters prefer a to b or b to c or c to a respectively. We then use a voting rule $f : \{-1, 1\}^n \to \{-1, 1\}$ on each each of these strings x, y, z. If there exists a candidate that defeated both other candidates, they are declared the *Condorcet winner* and this election is called *Condorcet election*.

|T|

Observe that there is a possibility that a defeats b, b defeats c and c defeats a, and there is no Condorcet winner. We are interested in characterizing which kind of voting rules $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ can ensure that no matter how voters rank the candidates, there always exists a Condorcet winner.

Here's an example to help clarify how these strings are encoded and the function is applied:

Example 3.1. Say the three candidates are a, b, c. Say there are three voters who vote as follows:

1. a > b > c

2. c > a > b

3. b > c > a

Then, since string x encodes whether a voter prefers a to b (1 if they prefer a, -1 if they prefer b), we get that

x = 1, 1, -1.

Similarly, string y encodes whether a voter prefers b to c and so we get that

y = 1, -1, 1.

Lastly, string z encodes whether a voter prefers c to a, we get that

z = -1, 1, 1.

Suppose that f, the voting rule, is the Majority function. Then,

f(x) = f(1, 1, -1) = 1.

This means, a has won the pairwise election between a and b. Similarly,

$$f(y) = f(1, -1, 1) = 1.$$

This means b has won the pairwise election between b and c. Lastly,

$$f(z) = f(-1, 1, 1) = 1.$$

This means c has won the pairwise election between c and a.

Hence, we see that there is no outright winner amongst a, b, c that defeated both other candidates in the pairwise election. So, no Condorcet winner exists. This shows that the Majority function cannot guarantee that there always exists a Condorcet winner.

So, we formally ask the question whether a voting rule can always guarantee a Condorcet winner.

Question 4. Suppose $f : \{-1,1\}^n$ is balanced and unanimous (so $f(1^n) = 1, f(-1^n) = -1$). Which functions f can be used as a voting rule in a 3-party Condorcet election such that there is always a Condorcet winner?

This question was studied in Social Choice theory and is known as Arrow's theorem:

Theorem 3.2 (Arrow's Theorem). The only functions f that satisfy the above property are the dictator functions.

There are many proofs of Arrow's theorem. We will follow a proof provided by Gil Kalai. First off, we see that the dictator functions indeed guarantee that winner always exists since each voter provides a total ordering. Hence, we focus on showing that no other function can guarantee this. We will not finish off the proof in this lecture but here is a good start.

We begin by defining a useful function, the Not-All-Equals function.

Definition 3.3. Define the Not-All-Equals function on 3 bits $NAE_3 : \{-1, 1\}^3 \rightarrow \{-1, 1\}$ as follows:

$$\mathsf{NAE}_{3}(w) = \begin{cases} 0 & w \in \{(1,1,1), (-1,-1,-1)\} \\ 1 & otherwise \end{cases}$$

Let $x, y, z \in \{-1, 1\}^n$ be the strings encoding the pairwise preferences of the voters. We then observe that $\mathsf{NAE}_3(f(x), f(y), f(z)) = 1$ iff the election has a Condercet winner. Indeed, the only way there is not a Condorcet winner is if f(x) = f(y) = f(z), i.e. the string is (1, 1, 1) and (-1, -1, -1) and the NAE_3 function will output 0 in that case and 1 otherwise.

We ask the question what is the Fourier expansion of the function NAE_3 ? We easily compute that

NAE₃(x) =
$$\frac{3}{4} - \frac{1}{4} \sum_{1 \le i < j \le 3} x_i x_j$$
.