CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 7: Feb 11, 2025
Lecturer: Eshan Chattopadhyay Scribe: Mohit Gurumukhani

Today, we will study noise stability and its applications.

1 Recap from Previous Lecture

Recall the definition of noisy distribution:

Definition 1.1 (Noisy distribution). Given p € [—1,1] and x € {—1,1}", define the noisy dis-

tribution with noise parameter p as y ~ N,(z). To sample y, mdependently for each coordinate

1 <1< n, let y; = x; with probability % + 5 and y; = —x; with probabzlzty ;3 — 5.

Thus, if p = 1, then y always equals x, when p = 0, y is a truly random string and if y = —1,
it always equals —z.
Using standard concentration bounds, we see that:

Claim 1.2. For any p € [-1,1], and x € {—1,1}": with high probability A(x, N,(x)) (the Hamming
distance) is (3 — &) n £ O(V/n).

Recall the definition of the noise operator.

Definition 1.3 (Noise Operator). For p € [—1,1], f : {—1,1}" — R, define the noise operator of
[ T,(f) : {—1,1}" = R as follows:

Tpf(x) = Eyn, [f ()]

We also derived the following Fourier representation for 7}, f(x):

Z f yNNp () XS Zplslf

SCln]
Using the noise operator, we defined the noise stability of a function as follows:

Definition 1.4 (Noise Stability). For f: {—1,1}" — R and p € [—1,1], we define noise stability
of f as
NSp(f) =, Tpf)-

In the previous lecture, we saw:

Claim 1.5. If f : {—1,1}" — {—1,1}, then

NSp(f) =2 Pr [f(z) = fly)] - 1.

s {~1,1}" y~Np (@)

Using Plancherel’s theorem and definition of noise stability, we obtained the following value for
noise stability of f in terms of Fourier expansion of f.

5 =3 ()

1

Claim 1.6.
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2 Properties of Noise Stability

Question 1. How does NS, change with p?
To compute this, we take derivative of N.S,(f) with respect to p:
d PR
2, VSe(f) = > ISIpEI ()2
0
SCln]

We see that at p = 1, this derivative equals

fNS Plo=1 =Y _I5IF(5)

We recognize from previous lectures that the last expression equals the the total influence of f.

Hence, p
%Nsﬂ(f)’p=l =1(f)

One way to interpret this is to recall that at p = 1, y equals z. So, the rate at which y deviates
slightly away from z, on average, is exactly captured by the total influence of f.

Question 2. Which function f maximizes NS, for a given p?

Since NS,(f) = 2Pryq_11)n yon, (@) [f (@) = f(y)] — 1, we see that this value can be at most
1. We easily see that for constant functions f =1 or f = —1, the noise stability is exactly 1 for all
values p.

This is a bit unsatisfactory conclusion. So, we instead slightly modify our question to ask:

Question 3. Which balanced function f maximizes NS, for a given p?

To help answer this question, lets first take a detour and define and study spectral distribution.

2.1 Spectral Distribution
Recall that if f is boolean valued, i.e., f: {—1,1}"" — {—1,1}, then
> f(s
SCln]
We can naturally define the spectral distribution & associated with f as follows:

Definition 2.1 (Spectral Distribution). For f : {—1,1}" — {—1,1}, define the spectral distribu-
tion Sy ~ ol"l associated with f as:

VT C [n],Pr[S; = T) = f(T)>.

We will often just write § instead of Sy for notational convenience.
We can find expressions for various properties associated with f in terms of the spectral distri-
bution of f. For instance:

Claim 2.2. For f : {—1,1}" — {—1,1}, the expected size of a set sampled from Sy is the total
influence of f. Formally:

Er~s, [[T]] = I(f)-
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Proof. Both sides equal } 7, |T| £ (T)2. O
Here’s another example:

Claim 2.3. For f : {~1,1}" — {~1,1}, for a set T sampled from Sy, the expected value of pl”!
equals NS,(f). Formally:

Er~s, [07] = NS,(f).

Proof. Both sides equal ZTC[H} p‘T‘f(T)Q. O

2.2 Maximizing Noise Stability for Balanced Functions

Recall from above that
NSy(f) = Erns, [,

Since f is balanced, we know that E[f] = 0. So,

_ — (M2 — 2 _
Pr [T =0)= f0)? =E[f]* =0
This implies
ETNSf [p|T|} < P,

since |T'| > 1. Hence, for a balanced function, N.S,(f) < p. We also see that equality is achieved
above iff the balanced function has all its mass on level 1, i.e., f(T') # 0 <= |T'| = 1. This implies

f must be of the form
flz) = Z a;x;.
i=1

where aq,...,a, € R.

Since we are interested in boolean valued f, it is not obvious what sets of values a; make f
boolean. We claim that this happens whenever f is the dictator function or the negation of the
dictator function. Formally:

Theorem 2.4. Let f: {—1,1}" — {—1,1} be such that there ezist ai,...,a, € R so that f(zx) =
Yo aizi. Then f must be the dictator function or the negation of the dictator function, i.e.
f = £z for some j € [n].

Proof. We see that f(1") = Y, a; € {—1,1}. Then consider, f(1""}(-1)) = f(1") —2a, € {-1,1}.
This implies that a, € {—1,0,1}. By symmetry, this holds for all a; for j € [n]. Let y € {—1,1}"
be such that for i € [n], y; = sign(a;). Then, f(y) = >, |a;| € {—1,1}. This implies there exists
exactly one j € [n] such that a; € {—1,1} and for k € [n] \ {j}, ar = 0 as desired. O

3 Condorcet Elections and Arrow’s Theorem

Consider the setting of 3 candidates say a,b, ¢ (can also consider more candidates) and n voters.
Each voter ranks their preference among a, b, ¢ such as say b > a > cor ¢ > b > a. Given the
votes, we generate 3 strings: z,y,z € {—1,1}" that encode whether voters prefer a to b or b to
c or ¢ to a respectively. We then use a voting rule f : {—1,1}" — {—1,1} on each each of these
strings x,y, z. If there exists a candidate that defeated both other candidates, they are declared
the Condorcet winner and this election is called Condorcet election.
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Observe that there is a possibility that a defeats b, b defeats ¢ and ¢ defeats a, and there is no
Condorcet winner. We are interested in characterizing which kind of voting rules f : {—1,1}" —
{—1,1} can ensure that no matter how voters rank the candidates, there always exists a Condorcet
winner.

Here’s an example to help clarify how these strings are encoded and the function is applied:

Example 3.1. Say the three candidates are a,b,c. Say there are three voters who vote as follows:
l.a>b>c
2.¢c>a>b
3. b>c>a

Then, since string x encodes whether a voter prefers a to b (1 if they prefer a, —1 if they prefer
b)), we get that
z=1,1,-1.

Similarly, string y encodes whether a voter prefers b to ¢ and so we get that
y=1,-1,1.
Lastly, string z encodes whether a voter prefers ¢ to a, we get that
z=-1,1,1.
Suppose that f, the voting rule, is the Majority function. Then,

flz)=f(1,1,-1)=1.

This means, a has won the pairwise election between a and b. Similarly,

f(y) = f(lv—lal) =1

This means b has won the pairwise election between b and c. Lastly,

f(z)=f(-1,1,1)=1.

This means ¢ has won the pairwise election between ¢ and a.

Hence, we see that there is no outright winner amongst a, b, ¢ that defeated both other candidates
in the pairwise election. So, no Condorcet winner exists. This shows that the Majority function
cannot guarantee that there always exists a Condorcet winner.

So, we formally ask the question whether a voting rule can always guarantee a Condorcet winner.

Question 4. Suppose f : {—1,1}" is balanced and unanimous (so f(1") = 1, f(—1") = —1).
Which functions f can be used as a voting rule in a 3-party Condorcet election such that there is
always a Condorcet winner?

This question was studied in Social Choice theory and is known as Arrow’s theorem:

Theorem 3.2 (Arrow’s Theorem). The only functions f that satisfy the above property are the
dictator functions.
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There are many proofs of Arrow’s theorem. We will follow a proof provided by Gil Kalai. First
off, we see that the dictator functions indeed guarantee that winner always exists since each voter
provides a total ordering. Hence, we focus on showing that no other function can guarantee this.
We will not finish off the proof in this lecture but here is a good start.

We begin by defining a useful function, the Not-All-Equals function.

Definition 3.3. Define the Not-All-Equals function on 3 bits NAE3 : {—1,1}% — {—1,1} as follows:

NAEs(w) — {0 we {111, (-1,-1,-1)}
1 otherwise

Let x,y,z € {—1,1}" be the strings encoding the pairwise preferences of the voters. We then
observe that NAEs3(f(z), f(y), f(z)) = 1 iff the election has a Condercet winner. Indeed, the only
way there is not a Condorcet winner is if f(z) = f(y) = f(2), i.e. the string is (1,1,1) and
(—=1,—1,—1) and the NAE3 function will output 0 in that case and 1 otherwise.

We ask the question what is the Fourier expansion of the function NAE3? We easily compute
that 5 1
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