
CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 7: Feb 11, 2025

Lecturer: Eshan Chattopadhyay Scribe: Mohit Gurumukhani

Today, we will study noise stability and its applications.

1 Recap from Previous Lecture

Recall the definition of noisy distribution:

Definition 1.1 (Noisy distribution). Given ρ ∈ [−1, 1] and x ∈ {−1, 1}n, define the noisy dis-
tribution with noise parameter ρ as y ∼ Nρ(x). To sample y, independently for each coordinate
1 ≤ i ≤ n, let yi = xi with probability 1

2 + ρ
2 and yi = −xi with probability 1

2 − ρ
2 .

Thus, if ρ = 1, then y always equals x, when ρ = 0, y is a truly random string and if y = −1,
it always equals −x.

Using standard concentration bounds, we see that:

Claim 1.2. For any ρ ∈ [−1, 1], and x ∈ {−1, 1}n: with high probability ∆(x,Nρ(x)) (the Hamming
distance) is

(
1
2 − ρ

2

)
n±O(

√
n).

Recall the definition of the noise operator.

Definition 1.3 (Noise Operator). For ρ ∈ [−1, 1], f : {−1, 1}n → R, define the noise operator of
f , Tρ(f) : {−1, 1}n → R as follows:

Tρf(x) = Ey∼Nρ [f(y)].

We also derived the following Fourier representation for Tρf(x):

Tρf(x) =
∑
S⊂[n]

f̂(S)Ey∼Nρ(x)[χS(y)] =
∑

ρ|S|f̂(S)χS(x).

Using the noise operator, we defined the noise stability of a function as follows:

Definition 1.4 (Noise Stability). For f : {−1, 1}n → R and ρ ∈ [−1, 1], we define noise stability
of f as

NSρ(f) = ⟨f, Tρf⟩.

In the previous lecture, we saw:

Claim 1.5. If f : {−1, 1}n → {−1, 1}, then

NSρ(f) = 2 Pr
x∼{−1,1}n,y∼Nρ(x)

[f(x) = f(y)]− 1.

Using Plancherel’s theorem and definition of noise stability, we obtained the following value for
noise stability of f in terms of Fourier expansion of f .

Claim 1.6.
NSρ(f) =

∑
ρ|S|f̂(S)2.

1

Lecture 7: Feb 11, 2025 2

2 Properties of Noise Stability

Question 1. How does NSρ change with ρ?

To compute this, we take derivative of NSρ(f) with respect to ρ:

d

dρ
NSρ(f) =

∑
S⊂[n]

|S|ρ|S|−1f̂(S)2.

We see that at ρ = 1, this derivative equals

d

dρ
NSρ(f)|ρ=1 =

∑
|S|f̂(S)2

We recognize from previous lectures that the last expression equals the the total influence of f .
Hence,

d

dρ
NSρ(f)|ρ=1 = I(f)

One way to interpret this is to recall that at ρ = 1, y equals x. So, the rate at which y deviates
slightly away from x, on average, is exactly captured by the total influence of f .

Question 2. Which function f maximizes NSρ for a given ρ?

Since NSρ(f) = 2Prx∼{−1,1}n,y∼Nρ(x)[f(x) = f(y)] − 1, we see that this value can be at most
1. We easily see that for constant functions f ≡ 1 or f ≡ −1, the noise stability is exactly 1 for all
values ρ.

This is a bit unsatisfactory conclusion. So, we instead slightly modify our question to ask:

Question 3. Which balanced function f maximizes NSρ for a given ρ?

To help answer this question, lets first take a detour and define and study spectral distribution.

2.1 Spectral Distribution

Recall that if f is boolean valued, i.e., f : {−1, 1}n → {−1, 1}, then∑
S⊂[n]

f̂(S)2 = 1.

We can naturally define the spectral distribution S associated with f as follows:

Definition 2.1 (Spectral Distribution). For f : {−1, 1}n → {−1, 1}, define the spectral distribu-
tion Sf ∼ 2[n] associated with f as:

∀T ⊂ [n],Pr[Sf = T] = f̂(T)2.

We will often just write S instead of Sf for notational convenience.
We can find expressions for various properties associated with f in terms of the spectral distri-

bution of f . For instance:

Claim 2.2. For f : {−1, 1}n → {−1, 1}, the expected size of a set sampled from Sf is the total
influence of f . Formally:

ET∼Sf
[|T |] = I(f).

Lecture 7: Feb 11, 2025 3

Proof. Both sides equal
∑

T⊂[n] |T |f̂(T)2.

Here’s another example:

Claim 2.3. For f : {−1, 1}n → {−1, 1}, for a set T sampled from Sf , the expected value of ρ|T |

equals NSρ(f). Formally:

ET∼Sf
[ρ|T |] = NSρ(f).

Proof. Both sides equal
∑

T⊂[n] ρ
|T |f̂(T)2.

2.2 Maximizing Noise Stability for Balanced Functions

Recall from above that
NSρ(f) = ET∼Sf

[ρ|T |].

Since f is balanced, we know that E[f] = 0. So,

Pr
T∼Sf

[T = ∅] = f̂(∅)2 = E[f]2 = 0

This implies
ET∼Sf

[ρ|T |] ≤ ρ,

since |T | ≥ 1. Hence, for a balanced function, NSρ(f) ≤ ρ. We also see that equality is achieved

above iff the balanced function has all its mass on level 1, i.e., f̂(T) ̸= 0 ⇐⇒ |T | = 1. This implies
f must be of the form

f(x) =
n∑

i=1

aixi.

where a1, . . . , an ∈ R.
Since we are interested in boolean valued f , it is not obvious what sets of values ai make f

boolean. We claim that this happens whenever f is the dictator function or the negation of the
dictator function. Formally:

Theorem 2.4. Let f : {−1, 1}n → {−1, 1} be such that there exist a1, . . . , an ∈ R so that f(x) =∑n
i=1 aixi. Then f must be the dictator function or the negation of the dictator function, i.e.

f = ±xj for some j ∈ [n].

Proof. We see that f(1n) =
∑

i ai ∈ {−1, 1}. Then consider, f(1n−1(−1)) = f(1n)−2an ∈ {−1, 1}.
This implies that an ∈ {−1, 0, 1}. By symmetry, this holds for all aj for j ∈ [n]. Let y ∈ {−1, 1}n
be such that for i ∈ [n], yi = sign(ai). Then, f(y) =

∑
i |ai| ∈ {−1, 1}. This implies there exists

exactly one j ∈ [n] such that aj ∈ {−1, 1} and for k ∈ [n] \ {j}, ak = 0 as desired.

3 Condorcet Elections and Arrow’s Theorem

Consider the setting of 3 candidates say a, b, c (can also consider more candidates) and n voters.
Each voter ranks their preference among a, b, c such as say b > a > c or c > b > a. Given the
votes, we generate 3 strings: x, y, z ∈ {−1, 1}n that encode whether voters prefer a to b or b to
c or c to a respectively. We then use a voting rule f : {−1, 1}n → {−1, 1} on each each of these
strings x, y, z. If there exists a candidate that defeated both other candidates, they are declared
the Condorcet winner and this election is called Condorcet election.

Lecture 7: Feb 11, 2025 4

Observe that there is a possibility that a defeats b, b defeats c and c defeats a, and there is no
Condorcet winner. We are interested in characterizing which kind of voting rules f : {−1, 1}n →
{−1, 1} can ensure that no matter how voters rank the candidates, there always exists a Condorcet
winner.

Here’s an example to help clarify how these strings are encoded and the function is applied:

Example 3.1. Say the three candidates are a, b, c. Say there are three voters who vote as follows:

1. a > b > c

2. c > a > b

3. b > c > a

Then, since string x encodes whether a voter prefers a to b (1 if they prefer a, −1 if they prefer
b)), we get that

x = 1, 1,−1.

Similarly, string y encodes whether a voter prefers b to c and so we get that

y = 1,−1, 1.

Lastly, string z encodes whether a voter prefers c to a, we get that

z = −1, 1, 1.

Suppose that f , the voting rule, is the Majority function. Then,

f(x) = f(1, 1,−1) = 1.

This means, a has won the pairwise election between a and b. Similarly,

f(y) = f(1,−1, 1) = 1.

This means b has won the pairwise election between b and c. Lastly,

f(z) = f(−1, 1, 1) = 1.

This means c has won the pairwise election between c and a.
Hence, we see that there is no outright winner amongst a, b, c that defeated both other candidates

in the pairwise election. So, no Condorcet winner exists. This shows that the Majority function
cannot guarantee that there always exists a Condorcet winner.

So, we formally ask the question whether a voting rule can always guarantee a Condorcet winner.

Question 4. Suppose f : {−1, 1}n is balanced and unanimous (so f(1n) = 1, f(−1n) = −1).
Which functions f can be used as a voting rule in a 3-party Condorcet election such that there is
always a Condorcet winner?

This question was studied in Social Choice theory and is known as Arrow’s theorem:

Theorem 3.2 (Arrow’s Theorem). The only functions f that satisfy the above property are the
dictator functions.

Lecture 7: Feb 11, 2025 5

There are many proofs of Arrow’s theorem. We will follow a proof provided by Gil Kalai. First
off, we see that the dictator functions indeed guarantee that winner always exists since each voter
provides a total ordering. Hence, we focus on showing that no other function can guarantee this.
We will not finish off the proof in this lecture but here is a good start.

We begin by defining a useful function, the Not-All-Equals function.

Definition 3.3. Define the Not-All-Equals function on 3 bits NAE3 : {−1, 1}3 → {−1, 1} as follows:

NAE3(w) =

{
0 w ∈ {(1, 1, 1), (−1,−1,−1)}
1 otherwise

Let x, y, z ∈ {−1, 1}n be the strings encoding the pairwise preferences of the voters. We then
observe that NAE3(f(x), f(y), f(z)) = 1 iff the election has a Condercet winner. Indeed, the only
way there is not a Condorcet winner is if f(x) = f(y) = f(z), i.e. the string is (1, 1, 1) and
(−1,−1,−1) and the NAE3 function will output 0 in that case and 1 otherwise.

We ask the question what is the Fourier expansion of the function NAE3? We easily compute
that

NAE3(x) =
3

4
− 1

4

∑
1≤i<j≤3

xixj .

	Recap from Previous Lecture
	Properties of Noise Stability
	Spectral Distribution
	Maximizing Noise Stability for Balanced Functions

	Condorcet Elections and Arrow's Theorem

