CS 6817: Special Topics in Complexity Theory

Lecture 5: Feb 4, 2025

Lecturer: Eshan Chattopadhyay

1 Review

Recall that for $f : \{-1, 1\}^n \to \{-1, 1\}$ and $i \in [n]$, the *influence* of coordinate i on f is defined as

$$I_i(f) = \Pr_{x \sim \{-1,1\}^n} \left[f(x) \neq f\left(x^{\oplus i}\right) \right]$$
(1)

where $x^{\oplus i}$ indicates the vector $(x_1, \ldots, x_{i-1}, -x_i, x_{i+1}, \ldots, x_n)$. The total influence of f is defined as

$$I(f) = \sum_{i=1}^{n} I_i(f).$$

Recall the (*n*-dimensional) Hamming cube H_n , defined to be the graph with vertex set $\{-1, 1\}^n$ and edge set

$$E = \{(x,y) : \Delta(x,y) = 1\}$$

For $b \in \{-1, 1\}$, define

$$A_b = \{x \in \{-1, 1\}^n : f(x) = b\}$$

The *cut* between A_1 and A_{-1} is defined to be the set

$$Cut(A_1, A_{-1}) = \{(x, y) \in E : x \in A_1 \text{ and } y \in A_{-1}\}.$$

It was previously shown that

$$I(f) = n \frac{|\operatorname{Cut}(A_1, A_{-1})|}{|E|} = \frac{|\operatorname{Cut}(A_1, A_{-1})|}{2^{n-1}}.$$

Example 1.1. We determine the total influence of the AND function. Recall that

$$AND(x) = \begin{cases} -1 & \text{if } x_i = -1 \text{ for all } i \in [n] \\ 1 & \text{otherwise.} \end{cases}$$

So $Cut(A_1, A_{-1})$ consists of the edges of H_n incident to the vertex corresponding to the vector with each entry equal to -1. There are n such edges, so

$$I(\texttt{AND}) = \frac{n}{2^{n-1}}.$$

Recall that for $i \in [n]$, the *i*th (discrete) derivative operator D_i maps $f : \{-1, 1\}^n \to \mathbb{R}$ to the function $D_i f : \{-1, 1\}^n \to \mathbb{R}$ defined by

$$D_i f(x) = \frac{f(x^{i \to 1}) - f(x^{i \to -1})}{2}$$

where $x^{i \to b}$ indicates the vector $(x_1, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_n)$.

Spring 2025

2 Analytic expressions for influence

Definition 2.1. For $f : \{-1,1\}^n \to \mathbb{R}$ and $i \in [n]$, the influence of coordinate i on f is defined as

$$I_i(f) = \underset{x \sim \{-1,1\}^n}{\mathbb{E}} \left[\mathbf{D}_i f(x)^2 \right] = \|\mathbf{D}_i f\|_2^2.$$

It was previously shown that Definition 2.1 generalizes Equation (1) for $f : \{-1, 1\}^n \to \{-1, 1\}$. **Proposition 2.2.** For $f : \{-1, 1\}^n \to \mathbb{R}$ and $i \in [n]$,

$$\mathcal{D}_i f(x) = \sum_{\substack{S \subseteq [n]\\S \ni i}} \widehat{f}(S) x^{S - \{i\}}.$$

Proof. For $i \in [n]$ and $S \subseteq [n]$ we have

$$x^{S} = \prod_{j \in S} x_{j} = \begin{cases} x_{i} x^{S - \{i\}} & \text{if } i \in S \\ x^{S} & \text{if } i \notin S \end{cases}$$

Below, it is assumed that we are summing over $S \subseteq [n]$. We have

$$f(x^{i \to 1}) = \sum_{S \ni i} \hat{f}(S) (x^{i \to 1})^S + \sum_{S \not\ni i} \hat{f}(S) (x^{i \to 1})^S$$
$$= \sum_{S \ni i} \hat{f}(S) (x^{i \to 1})^{S - \{i\}} + \sum_{S \not\ni i} \hat{f}(S) (x^{i \to 1})^S$$
$$= \sum_{S \ni i} \hat{f}(S) x^{S - \{i\}} + \sum_{S \not\ni i} \hat{f}(S) x^S$$

and

$$f(x^{i \to -1}) = \sum_{S \ni i} \hat{f}(S) (x^{i \to -1})^S + \sum_{S \not\ni i} \hat{f}(S) (x^{i \to -1})^S$$
$$= -\sum_{S \ni i} \hat{f}(S) (x^{i \to -1})^{S - \{i\}} + \sum_{S \not\ni i} \hat{f}(S) (x^{i \to -1})^S$$
$$= -\sum_{S \ni i} \hat{f}(S) x^{S - \{i\}} + \sum_{S \not\ni i} \hat{f}(S) x^S$$

 \mathbf{SO}

$$\begin{aligned} \mathsf{D}_{i}f(x) &= \frac{f\left(x^{i\to1}\right) - f\left(x^{i\to-1}\right)}{2} \\ &= \frac{1}{2} \left(\sum_{S\ni i} \hat{f}(S) x^{S-\{i\}} + \sum_{S \not\ni i} \hat{f}(S) x^{S} + \sum_{S\ni i} \hat{f}(S) x^{S-\{i\}} - \sum_{S \not\ni i} \hat{f}(S) x^{S} \right) \\ &= \frac{1}{2} \left(2 \sum_{S\ni i} \hat{f}(S) x^{S-\{i\}} \right) \\ &= \sum_{S\ni i} \hat{f}(S) x^{S-\{i\}}. \end{aligned}$$

Proposition 2.3. For $f : \{-1, 1\}^n \to \mathbb{R}$ and $i \in [n]$,

$$I_i(f) = \sum_{\substack{S \subseteq [n]\\S \ni i}} \hat{f}(S)^2.$$

Proof. We have

$$\begin{split} I_i(f) &= \|\mathbf{D}_i f\|_2^2 \\ &= \langle \mathbf{D}_i f, \mathbf{D}_i f \rangle \\ &= \left\langle \sum_{\substack{S \subseteq [n] \\ S \ni i}} \hat{f}(S) x^{S-\{i\}}, \sum_{\substack{T \subseteq [n] \\ T \ni i}} \hat{f}(T) x^{T-\{i\}} \right\rangle \\ &= \sum_{\substack{S \subseteq [n] \\ S \ni i}} \hat{f}(S) \sum_{\substack{T \subseteq [n] \\ T \ni i}} \hat{f}(T) \langle x^{S-\{i\}}, x^{T-\{i\}} \rangle \\ &= \sum_{\substack{S \subseteq [n] \\ S \ni i}} \hat{f}(S) \sum_{\substack{T \subseteq [n] \\ T \ni i}} \hat{f}(T) \delta_{S,T} \\ &= \sum_{\substack{S \subseteq [n] \\ S \ni i}} \hat{f}(S) \hat{f}(S) \\ &= \sum_{\substack{S \subseteq [n] \\ S \ni i}} \hat{f}(S)^2 \end{split}$$

with the third line by Proposition (2.2) and $\langle x^{S-\{i\}}, x^{T-\{i\}} \rangle = \delta_{S,T}$ by the orthonormality of the characters together with the fact that we are considering S and T with the same element i removed.

Corollary 2.4. For $f : \{-1, 1\}^n \to \mathbb{R}$,

$$I(f) = \sum_{S \subseteq [n]} |S| \hat{f}(S)^2.$$

Proof. We have

$$I(f) = \sum_{i=1}^{n} I_i(f) = \sum_{\substack{i=1 \ S \subseteq [n]\\S \ni i}}^{n} \hat{f}(S)^2 = \sum_{\substack{S \subseteq [n]\\S \ni i}} |S| \hat{f}(S)^2$$

with the rightmost equality because each S contains |S| indices and therefore appears |S| times in the double sum.

3 Poincaré inequality

Theorem 3.1. For $f : \{-1, 1\}^n \to \mathbb{R}$, $\operatorname{Var}(f) \leq I(f)$.

Proof. Recall that

$$\mathop{\mathbb{E}}_{x \sim \{-1,1\}^n} \left[f^2 \right] = \langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2$$

by Parseval's theorem, and

$$\mathbb{E}_{x \sim \{-1,1\}^n}[f] = \mathbb{E}_{x \sim \{-1,1\}^n}[f_1] = \mathbb{E}_{x \sim \{-1,1\}^n}[f_{\chi \varnothing}] = \langle f, \chi_{\varnothing} \rangle = \hat{f}(\varnothing)$$

where 1 denotes the identity function and χ_S denotes the indicator function of a set $S \subseteq [n]$. So

$$\operatorname{Var}(f) = \underset{x \sim \{-1,1\}^{n}}{\mathbb{E}} \left[f^{2} \right] - \underset{x \sim \{-1,1\}^{n}}{\mathbb{E}} [f]^{2}$$
$$= \sum_{S \subseteq [n]} \widehat{f}(S)^{2} - \widehat{f}(\varnothing)^{2}$$
$$\leq \sum_{S \subseteq [n]} |S| \widehat{f}(S)^{2}$$
$$= I(f)$$

with the inequality because $|S| \ge 1$ for $S \ne \emptyset$, and the final equality by Corollary (2.4).

4 Influential coordinates for balanced functions

Call $f : \{-1,1\}^n \to \{-1,1\}$ balanced if $\mathbb{E}[f] = 0$ and relax this to allow $\operatorname{Var}(f) = \Omega(1)$. In this case, the Poincaré inequality implies that there exists some $i \in [n]$ such that $I_i(f) = \Omega(1/n)$. This motivates the following question.

Question 1. Does there exist a balanced function f with $\max_{i} \{I_i(f)\} = O(1/n)$?

It was previously shown that

$$\max_{i} \{ I_i(\texttt{MAJORITY}) \} = \frac{1}{\sqrt{n}}$$

and

$$\max\{I_i(\mathsf{PARITY})\} = 1.$$

Definition 4.1. Given $\ell, b \in \mathbb{Z}_{>0}$, the function TRIBES: $\{-1, 1\}^{\ell b} \rightarrow \{-1, 1\}$ is an OR of ANDs on $n = \ell b$ variables $\{x_{ij}\}_{1 \le i < \ell, 1 \le j \le b}$ defined by

$$\mathsf{TRIBES}(x_{11},\ldots,x_{1b},\ldots,x_{\ell 1},\ldots,x_{\ell b}) = (x_{11}\wedge\cdots\wedge x_{1b})\vee\cdots\vee(x_{\ell 1}\wedge\cdots\wedge x_{\ell b}).$$

Example 4.2. We determine the maximal influence of the TRIBES function. The function is symmetric, so it suffices to find the influence of the first variable x_{11} . This variable is pivotal exactly when $x_{12} = \cdots = x_{1b} = -1$ and the second through ℓ th AND gates equal 1^1 , so

$$I_{11}(\texttt{TRIBES}) = \Pr_{x \sim \{-1,1\}^n} \left[f(x) \neq f\left(x^{\oplus 11}\right) \right] = \frac{1}{2^{b-1}} \left(1 - \frac{1}{2^b} \right)^{\ell-1}$$

The TRIBES function is roughly balanced for $b \approx \log n - \log \log n$. For such b, one can show that $I_{11} = O(\log n/n)$. So $\max_i \{I_i(\text{TRIBES})\} = O(\log n/n)$.

The KKL theorem, to be stated and proved later, shows that the **TRIBES** example is tight up to a constant factor.

¹Informally, x_{11} is pivotal when each x_{12}, \ldots, x_{1b} is "on" and the second through ℓ th AND gates are "off". "On" and "off" for $x_{ij} \in \{-1, 1\}$ correspond to -1 and 1, respectively.