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1 The Hamming Cube

The Hamming cube is defined as {0, 1}n, or equivalently {±1}n. The Hamming distance between two
points over the cube x, y ∈ {0, 1}n is defined as

∆(x, y)
def
= |{i : xi 6= yi}|.

The Hamming weight w : {0, 1}n → [0, n] of a points x ∈ {0, 1}n is defined as its number of non-zero
coordinates, or alternatively—it’s distance from 0:

w(x)
def
= ∆(x, 0).

Through out this lecture, we define the graph Hn = ({0, 1}n, E) over the Hamming Cube, with edges
corresponding to vertices with hamming distance 1:

(x, y) ∈ E ⇐⇒ ∆(x, y) = 1.

2 Influence

We begin with introducing the notion of bit and total influence of a Boolean function. Intuitively, the
i-th influence of a Boolean function f : {±1}n → {±1} would captures the influence the i-th coordinate
has over the output, given a random input.

Specifically, for every x ∈ {±1}n and i ∈ [n], we define the vector x⊕i as identical to x except with its
i-th coordinate flipped. Then,

Definition 2.1 (Influence). For every i ∈ [n], the i-th Influence of a Boolean function f is defined as

Ii[f ]
def
= Pr

x∼{±1n}

[
f(x) 6= f(x⊕i)

]
.

Correspondingly, the total influence is defined as the sum of the influences of all bits.

Definition 2.2. The Total Influence is defined as

I[f ]
def
=
∑
i∈[n]

Ii[f ].

Is there any bound on the influence of a function? Clearly every bit-influence is bounded as Ii[f ] ∈ [0, 1]
as it’s a probability. Hence, the total influence is bounded between I[f ] ∈ [0, n].

Example 2.1. The constant function f = 1 has no influence at all, namely I[1] = 0. The parity function
f(x) = χ[n](x) has maximum influence I[f ] = n, since Ii[χ[n]] = 1 (for every index i) as every bit-flip of
the input also flips the output.
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A more interesting example is of the majority function Maj2k+1 : {±1}2k+1 → {±1}, which is defined
as follows

Maj2k+1(x)
def
=

{
1
∑

i∈[2k+1] x > 0,

0 otherwise.

Lemma 2.1. I(Maj2k+1) = O(
√
k).

Proof. Without loss of generality consider the first coordinate i = 1, and observe that

I1[f ] = Pr
x∼{±1}n

 ∑
i∈[2,2k+1]

xi = 0

 =

(
2k
k

)
22k

,

since we need to fix k coordinate with value 1 and the rest as 0. Using Stirling’s approximation
(
2k
k

)
∼ 22k√

kπ
,

we bound the above by

≤
22k√
kπ

22k
= O(1/

√
k),

and thus

I[f ] =
∑

i∈[2k+1]

Ii[f ] = (2k + 1)
1√
k

= O(
√
k).

Another example is of the Andn : {±1}n → {±1} function that is defined as 1 iff x1 = . . . xn = −1.

Example 2.2. I[Andn] = n
2n−1 .

Proof. Consider Ii[Andn] for some fixed i ∈ [n]. An input x has influence in coordinate i over the output
only if all the other coordinates are −1; a random x satisfies that with probability 2−(n−1), and thus

Ii[Andn] = 2−(n−1).

Since that’s true for every i, the total influence is exactly n · Ii[Andn].

3 Cuts’ perspective

Let us present a different perspective for the Influence. Consider the graph Hn that was defined earlier,
and recall that its edges correspond to vertices that differ by 1 coordinate. Define the subset of edges
Ei ⊆ E as the ones the differ only on the i-th coordinate, namely (x, y) ∈ Ei iff xi 6= yi. Thus,

E =
⋃
i∈[n]

Ei,

where the sets Ei are disjoint.
It follows that |Ei| = 2n−1 (for every i), because (x, y) ∈ Ei if x and y agree on all the coordinates

but the i-th one, and there are 2n−1 options for such fixation. By the disjoint-ness of Ei we get that

|E| =
∑
i∈[n]

|Ei| = n · 2n−1

Let Ab
def
= f−1(b) be the set of points corresponds to value b ∈ {±1}n. The Cut between A1, A−1 is the

set of all edges that goes from either set to the other:

Cut(A1, A−1)
def
= {(x, y) ∈ E : x ∈ A1, y ∈ A−1},
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and correspondingly define the i-th Cut as

Cuti(A1, A−1)
def
= Cut(A1, A−1) ∩ Ei.

Claim 3.1. For every i ∈ [n] it holds that

Ii[f ] =
|Cuti(A1, A−1)|

|Ei|
.

Proof. Enrolling the definition,

Ii[f ] = Pr
x∼{±1}n

[
f(x) 6= f(x⊕i)

]
,

and notice that the “good” x-es, the ones for which f(x) 6= f(x⊕i), namely (x, x⊕i) ∈ Cuti(A1, A−1).
There is a probability of 2 · 2−n of choosing such x, which is exactly the inverse of the cardinality of
|Ei| = 2n−1.

Thus,

Claim 3.2. It holds that

I[f ] = n · |Cut(A1, A−1)|
|E|

Proof. Unrolling the definition of total influence,

I[f ] =
∑
i∈[n]

Ii[f ] =
∑
i∈[n]

|Cuti(A1, A−1)|
|Ei|

but since all the Ei has the same cardinality |Ei| = |Ej |, and thus |E1| = |E||/n, we get that

I[f ] =
∑
i∈[n]

|Cuti(A1, A−1)|
|E1|

=
|Cut(A1, A−1)|

|E1|
= n · |Cut(A1, A−1)|

|E|

4 Sensitivity

Another plausible parameter to measure a Boolean function is it’s sensitivity at some point x—namely
all the points y for which f(x) 6= f(y) and their hamming distance from x is 1:

Definition 4.1. The Sensitivity of f at points x is defined as

S(f, x)
def
= |{y : f(x) 6= f(y)} ∧∆(x, y) = 1|.

Accordingly, the Average Sensitivity of a function is defined as it sensitivity over a random input:

Definition 4.2. The Average Sensitivity of a Boolean function is defined as

AS(f) = E
x∼{±1}n

[S(f, x)].

The Average Sensitivity is in fact another perspective for the Total Influence, as they are equal:
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Claim 4.1. AS(f) = I[f ].

Proof. For every x ∈ {±1} and i ∈ [n], let Zi,x be an indicator for whether f(x) 6= x⊕i. Thus,

S(f, x) =
∑
i∈[n]

Zx,i,

and hence by linearity of expectation,

AS(f) = E
x∼{±1}n

[S(f, x)] =
∑
i∈[n]

E
x∼{±1}n

[Zx,i] =
∑
i∈[n]

Ii[f ] = I[f ],

where the penultimate equality is by definition of Ii[f ].

The sensitivity of the function itself is defined as the maximum sensitivity over some input x:

Definition 4.3. S(f) = maxx S(f, x).

For example, S(AND) = n because for x = (−1, . . . ,−1), every bit-flip also flips the AND’s value.
Other points y 6= x, by definitions, have no sensitivity S(f, y) = 0.

5 Discrete Derivative

For every x ∈ {±1}n and b ∈ {±1}, define xi→b identically as x, except the fixture of xi = b.

Definition 5.1. The i-th Discrete Derivative of f(x) is defined as

Dif(x)
def
=

f(xi→1)− f(xi→−1)

2
.

Observe that Di is a linear operator, as for every α, β ∈ R it holds that

Di(αf) = αDi(f),

and
Di(αf + βg) = αDi(f) + βDi(g).

Our first claim relates the derivative’s norm to the function’s influence.

Claim 5.1. For every i ∈ [n],
‖Dif‖22 = Ii[f ].

Proof. Observe that Dif(x) ∈ {−1, 0, 1} as the function’s domain is f(x) ∈ {±1}.
Thus, by the norm’s definition, and the symmetry about choosing xi→1 and xi→−1,

‖Dif‖22 = E
x∼{±1}n

[
(Dif(x))2

]
=

1

4
E

x∼{±1}n

[(
f(xi→1)− f(xi→−1)

)2]
=

1

2
E

x∼{±1}n

[∣∣f(xi→1)− f(xi→−1)
∣∣].

Observe that the absolute value does not vanishes only if f(xi→1) 6= f(xi→−1), so the above is equal to

=
1

2
2 Pr
x∼{±1}n

[
f(xi→1) 6= f(xi→−1)

]
= Ii[f ],

where the factor 2 comes the symmetry of fixing either xi→1 or xi→−1, and the ultimate equation follows
by definition.
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