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1 Introduction

In this section, we often look at functions f as black boxes, allowing us to analyze the input and
output but not allowing us access to their formulae / inner workings. We then pick up where we
left class last:

Theorem 1.1. There is a (3, 1)-tester A for LIN =
{
f : F2

2 → F2 | f is a linear function
}

.

As discussed in last class, this means that A makes at most 3 queries of f .

• If f ∈ LIN, then A accepts.

• IF f /∈ LIN, then P[A rejects] > λ · dist(f, LIN), where λ = 1.

Definition 1.2. dist(f, g) := dist(f, g) = P[f 6= g].

Definition 1.3. dist(f, P ) := min
g∈P
{dist(f, g)} for any set of functions P .

2 The BLR Test

The BLR Test provides us with a test which can be used for the above theorem (1.1), where we
will define the test and prove that it meets this condition in this lecture. There are two analogous
forms of the BLR Test:

Definition 2.1. Suppose we have a function f : Fn
2 → F2. Then, the BLR Test is as follows:

• First, generate a random x and y.

• Then, accept if and only if f(x+ y) = f(x) + f(y).

Likewise, we can define the BLR Test for the other two value basis we’ve discussed in this course:

Definition 2.2. The component-wise multiplication operator is defined as x⊕ y := {z | zi = xiyi}.

Definition 2.3. Suppose we have a function f : {−1, 1}n → {−1, 1}. Then, the BLR Test is as
follows:

• First, generate a random x and y.

• Then, accept if and only if f(x)f(y)f(x⊕ y) = 1.

Here, we see that for both definitions, we only require 3 calls to f .

We will then try to show that this second definition meets the rejection requirements of the
above theorem. Importantly, when our set is {0, 1}n, LIN = {f ∈ PARITY}, where PARITY is the
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set of χS =
∏

i∈S xi that we have discussed in previous lectures.

Suppose that for all S ∈ [n] f is far from χS (namely that f is not equal to any of them).
Thus, min

S⊆[n]
{P[f(x) 6= χs(x)]} > 0, so there exists an ε > 0 such that min

S⊆[n]
{P[f(x) 6= χs(x)]} > ε.

Equivalently, min
S⊆[n]

(dist(f, χS)) > ε.

Previously, we noted that for a random variable X in {−1, 1}, E[]X] = P[X = 1]− P[X = −1].
This gives us the following:

E[f(x)f(y)f(x⊕ y)] = P[f(x)f(y)f(x⊕ y) = 1]− P[f(x)f(y)f(x⊕ y) = −1]

E[f(x)f(y)f(x⊕ y)] = 2P[f(x)f(y)f(x⊕ y) = 1]− 1

E[f(x)f(y)f(x⊕ y)] + 1

2
= P[f(x)f(y)f(x⊕ y) = 1]

As defined previously, P[f(x)f(y)f(x⊕ y) = 1] = P[BLR accepts].

Using the Fourier transformation f(x) =
∑

S f̂(S)χS(x), we can then take this expectation and
simplify it:

E[f(x)f(y)f(x⊕ y)] = E
x,y

[(∑
S

f̂(S)χS(x)

)(∑
T

f̂(T )χT (y)

)(∑
W

f̂(W )χW (x⊕ y)

)]
=
∑

S,T,W

f̂(S)f̂(T )f̂(W ) E
x,y

[χS(x)χT (y)χW (x⊕ y)]

=
∑

S,T,W

f̂(S)f̂(T )f̂(W )E
x
[χS(x)χW (x)]E

y
[]χT (y)χW (y)]

(1)

In this, we are able to first pull out the Fourier-transformed functions, which are not dependent
on x and y. Then, because our choice for x and y are independent of each other, we are able to
separate their expectations. We can then simplify this further using the following:

Definition 2.4. For any sets S and T , the symmetric difference is defined as S∆T := {u | u ∈
S ∪ u /∈ T ∩ u | u /∈ S ∪ u ∈ T}.

Now, we know that for all sets S, T ∈ [n], χS(x)χT (x) = χS∆T (x). Thus, we have the following:

E[f(x)f(y)f(x⊕ y)] =
∑

S,T,W

f̂(S)f̂(T )f̂(W )E
x
[χS∆W (x)]E

y
[χT∆W (y)]

In the previous lecture, we showed that χS∆T (x) = 1 when S = T and 0 otherwise. This cancels
out most of the terms and yields this result:

E[f(x)f(y)f(x⊕ y)] =
∑
S

f̂(S)3

.
Now, we know that

∑
S f̂(S)3(S) 6 max

S
{f̂(S)}

∑
S f̂(S)2. Since

∑
S f̂(S)2 = 1 by Parseval’s

Theorem,
∑

S f̂
3(S) 6 max

S
{f̂(S)}.
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Note, however, that f̂(S) = 1−2P[f 6= χS ]. By our assumption that min
S⊆[n]

{P[f(x) 6= χs(x)]} > ε,

f̂(S) 6 1− 2ε.

Thus,
∑

S f̂
3(S) 6 1− 2ε. Plugging this into the above expression, we get P{BLR accepts} 6

1− ε. This means that P{BLR rejects} > ε which satisfies the requirements of the theorem .

3 Influence and Noise Probability of Boolean Function

Often, we aim to design Boolean functions with real-world applications. One of these involves
dealing with election results, where we seek functions with the following properties:

• Monotonic: Define the operator less than or equal to as x 6 y if and only if xi 6 yi,∀i. If
x 6 y, then f(x) 6 f(y).

• Unanimous: f(1, 1, . . . , 1) = 1 and f(0, 0, . . . , 0) = 0.

• Symmetric: For all permutations π, f(x) = f(π(x)).

• Odd: f(x̄) = ¯f(x).

We can show that the only function that satisfies these properties is the majority function (MAJ
on an odd number of bits.

We now introduce the notion of influence or coordinates on Boolean functions, as well as the
notion of total influence.

Definition 3.1. Given x ∈ {−1, 1}n, x⊕i is equivalent to x with the ith bit flipped.

Definition 3.2. Suppose we have a function f : {−1, 1}n → {−1, 1}. Then, Ii(f) = P
x∈{−1,1}n

[
f(x) 6= f

(
x⊕i
)]

.

Definition 3.3. Suppose we have a function f : {−1, 1}n → {−1, 1}. Then, the total influence is
defined as I(f) =

∑n
i=1 Ii(f).
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