
CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 2: Jan 23, 2025

Lecturer: Eshan Chattopadhyay Scribe: Max Tromanhauser

1 The Fundamental Theorem

Continuing from last lecture, we look to prove the following fundamental theorem.

Theorem 1.1. Let f : {−1, 1}n → R be a Boolean function. Then there exists a unique, real,
multilinear polynomial p(x) such that p(x) = f(x) for all x ∈ {−1, 1}n.

In the previous lecture, we defined the Fourier transform of f(x) to be the polynomial

p(x) =
∑
S⊆[n]

csx
S

where xS =
∏
i∈S xi. The coefficient cs is called the Sth Fourier coefficient of f and is also denoted

f̂(S) where f̂ : 2[n] → R. We have already established p(x) to be real and multilinear, but we still
must show that it is unique.

Towards that end, we defined a vector space V = {f : {−1, 1}n → R} with inner product 〈f, g〉 =
Ex[f(x)g(x)] and `2-norm ||f ||2 =

√
〈f, f〉. This definition satisfies the three requirements of an

inner product:

1. It is trivially symmetric by the commutativity of multiplication.

2. It is positive-definite — i.e., if 〈f, f〉 = 0 then f : {−1, 1}n → 0. By definition of expecta-
tion, if Ex[f(x)2] = 0 then 1

2n
∑

x f(x)2 = 0 and so f(x) = 0 for all x ∈ {−1, 1}n.

3. It is linear in the first argument as for all f, g, h ∈ V , we can show 〈f+g, h〉 = 〈f, h〉+〈g, h〉
by the linearity of expectation,

〈f + g, h〉 = E
x∈{−1,1}n

[(f(x) + g(x)) · h(x)]

= E
x∈{−1,1}n

[(f(x)h(x) + g(x)h(x))]

= E
x∈{−1,1}n

[(f(x)h(x)] + E
x∈{−1,1}n

[g(x)h(x))]

= 〈f, h〉+ 〈g, h〉

Claim 1.2. Let χS(x) = xS, then {χS}S⊆[n] forms an orthonormal basis of V .

Note that this claim will directly show the uniqueness for Theorem 1.1 since any function is then
expressed as a unique linear combination of xS terms. Thus, p(x) must be unique.

Proof.

1. Because χS is Boolean valued, χS(x)2 = 1 for all x ∈ {−1, 1}n. Therefore, all χS are normal
as ||χS(x)||2 =

√
〈χS , χS〉 =

√
Ex[χS(x)2] = 1.

1
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2. For all S, T ⊆ [n] and S 6= T , we want to show 〈χS , χT 〉 = 0. Let S4T be the symmetric
difference between these subsets and note that S4T 6= ∅ because S 6= T .

〈χS , χT 〉 = E
x∈{−1,1}n

[χS(x) · χT (x)]

= E
x∈{−1,1}n

[χS∩T (x)2 · χS4T (x)]

= E
x∈{−1,1}n

[χS4T (x)] = 0

As before, χS∩T (x)2 = 1 because it is a Boolean valued function. Similarly, Ex[χS4T (x)] = 0
as S4T 6= ∅ and so χS4T (x) is a parity function.

3. Because dimR(V ) = 2n and {χS}S⊆[n] is a set of 2n normal, orthogonal vectors in V , then it
must be an orthonormal basis for V .

2 Useful Fourier analytic formulas

As we’ve established, any Boolean function f(x) can be expressed as f(x) =
∑

S⊆[n] f̂(S)χS(x).
Now we will make several observations that follow from this.

Observation 2.1. f̂(S) = 〈f, χS〉.

This follows from the linearity of expectation:

〈f, χS〉 =

〈 ∑
T⊆[n]

f̂(T )χS(x), χS

〉

=
∑
T⊆[n]

f̂(T )〈χT (x), χS(x)〉

= f̂(S)

The final equality follows from the orthogonality of the basis {χS}— i.e., that all terms 〈χT , χS〉 = 0
if S 6= T . With this fact, we can see that

f̂(S) = 〈f, χS〉 = E
x∈{−1,1}n

[f(x)χS(x)]

This is the inverse Fourier transform and will be useful throughout the course.

Observation 2.2. If f is Boolean valued, then f̂(S) = Prx[f(x) = χS(x)]− Prx[f(x) 6= χS(x)].

This directly follows from the definition of expectation. Because both functions output {−1, 1},
then f(x)χS(x) = 1 if f(x) = χS(x) and f(x)χS(x) = −1 otherwise. Thus,

E
x∈{−1,1}n

[f(x)χS(x)] =
1

2n

∑
x∈{−1,1}n

f(x)χS(x)

=
1

2n

 ∑
x : f(x)=χS(x)

1

 +
1

2n

 ∑
x : f(x)6=χS(x)

−1


= Pr

x∈{−1,1}n
[f(x) = χS ]− Pr

x∈{−1,1}n
[f(x) 6= χS ]
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Observation 2.3. Ex[f(x)] = f̂(∅).

This is derived by using the linearity of expectation and noting that Ex[χS(x)] = 0 for any S 6= ∅.

E
x∈{−1,1}n

[f(x)] = E
x∈{−1,1}n

 ∑
S⊆[n]

f̂(S)χS(x)


=

∑
S⊆[n]

f̂(S) E
x∈{−1,1}n

[χS(x)]

= E
x∈{−1,1}n

[f̂(∅)χ∅(x)]

= f̂(∅)

The final equality comes from the choice that χ∅(x) = 1 for all x ∈ {−1, 1}n.

Observation 2.4 (Parseval’s Identity). Ex[f(x)2] = 〈f, f〉 =
∑

S⊆[n] f̂(S)2.

This is a direct result of the linearity of the inner product and the orthogonality of the {χS} basis.

〈f, f〉 =

〈 ∑
S⊆[n]

f̂(S)χS(x),
∑
T⊆[n]

f̂(T )χT (x)

〉

=
∑

S,T⊆[n]

f̂(S)f̂(T )〈χS(x), χT (x)〉

=
∑
S⊆[n]

f̂(S)2

Observation 2.5. Var[f(x)] =
∑

S⊆[n],S 6=∅ f̂(S)2.

This follows directly from the combination of Observations 2.3 and 2.4.

Varx∈{−1,1}n [f(x)] = E
x∈{−1,1}n

[f(x)2]− E
x∈{−1,1}n

[f(x)]2

=
∑
S⊆[n]

f̂(S)2 − f̂(∅)2

=
∑

S⊆[n],S 6=∅

f̂(S)2

Observation 2.6 (Plancheral Theorem). Ex[f(x)g(x)] = 〈f, g〉 =
∑

S⊆[n] f̂(S)ĝ(S).

This follows exactly the same derivation as Observation 2.4 substituting f̂(T ) with ĝ(T ).

Observation 2.7. If f is Boolean valued, then
∑

S⊆[n] f̂(S)2 = 1.

This is a direct corollary to Observation 2.4, as a Boolean valued f has Ex[f(x)2] = 1.
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3 Property Testing

A property tester is an algorithm with black box access to a function which decides whether that
function exhibits some property. Properties are defined as be a collection of functions.

We begin by defining a distance measure for Boolean functions and properties, then provide a
formal definition for a tester.

Definition 3.1. Given f, g : Fn2 → F2, we define their distance to be

dist(f, g) = Pr
x

$←Fn
2

[f(x) 6= g(x)].

Given property P ⊆ {f : Fn2 → F2}, we define a function’s distance to that property to be

dist(f, P ) = min
g ∈P

dist(f, g).

Definition 3.2. A randomized algorithm A is an (r, λ)-tester for property P if, for all f : Fn2 → F2,
Af makes at most r queries and

1. If f ∈ P , then Pr[Af accepts] = 1

2. If f /∈ P , then Pr[Af rejects] ≥ λ · dist(f, P )

where the probabilities are over the randomness of A.

3.1 Linearity Testing

Now we turn to a specific property and a tester for it. Given black box access to some Boolean
function, we would like to make a small (constant) number of queries to determine if the function
is linear. That is to say, it belongs to the property

LIN = {f : Fn2 → F2 | ∀x, y ∈ Fn2 , f(x+ y) = f(x) + f(y)}

Our tester for LIN is from Blum, Luby, Rubinfeld ’90 and so is called the BLR Test. To test for

linearity, simply sample two random elements x, y
$← Fn2 and accept if and only if f(x) + f(y) =

f(x+ y).

Theorem 3.3. The BLR test is a (3, 1)-tester for LIN.

We will prove the above theorem in next class.
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