CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 2: Jan 23, 2025
Lecturer: Eshan Chattopadhyay Scribe: Maz Tromanhauser

1 The Fundamental Theorem

Continuing from last lecture, we look to prove the following fundamental theorem.

Theorem 1.1. Let f : {—1,1}" — R be a Boolean function. Then there exists a unique, Teal,
multilinear polynomial p(z) such that p(x) = f(z) for all x € {—1,1}".

In the previous lecture, we defined the Fourier transform of f(x) to be the polynomial

p(z) = Z csx’

SC[n]

where 2% = [Lics zi- The coefficient c; is called the Sth Fourier coefficient of f and is also denoted
f(S) where f : 2"l — R. We have already established p(z) to be real and multilinear, but we still
must show that it is unique.

Towards that end, we defined a vector space V- = {f : {—1,1}" — R} with inner product (f,g) =
E.[f(x)g(x)] and fe-norm ||f||l2 = /{(f, f). This definition satisfies the three requirements of an

inner product:

1. Tt is trivially symmetric by the commutativity of multiplication.

2. It is positive-definite — i.e., if (f, f) =0 then f: {—1,1}" — 0. By definition of expecta-
tion, if E;[f(2)?] = 0 then 5~ >_, f(z)? = 0 and so f(z) =0 for all x € {—1,1}".

3. It is linear in the first argument as for all f, g, h € V, we can show (f+g, h) = (f, h)+{(g, h)
by the linearity of expectation,

(Fram= _E () +g) hx)
= E | [(@h() + g(@)h(@)
= E U@+ E (o))
= (f.h)+ (g, )

Claim 1.2. Let xs(x) = 2%, then {xs}scn) forms an orthonormal basis of V.

Note that this claim will directly show the uniqueness for Theorem 1.1 since any function is then
expressed as a unique linear combination of ¥ terms. Thus, p(x) must be unique.

Proof.

1. Because xg is Boolean valued, ys(z)? = 1 for all z € {—1,1}". Therefore, all yg are normal
as [[xs(@)ll2 = V/(xs, xs) = VEa[xs(2)?] = L.
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2. For all S,T C [n] and S # T, we want to show (xg,x7) = 0. Let SAT be the symmetric
difference between these subsets and note that SAT # () because S # T.

(x5, XT) = [xs(z) - xr ()]

E
ze{-1,1}"

j— 2 .
= xe{Evl}n[XSﬂT(cT) Xsar(z)]

xe{ilyl}n[XSAT($)]

As before, xsnr(7)? = 1 because it is a Boolean valued function. Similarly, E,[xsa7(z)] =0
as SAT # () and so xsar(z) is a parity function.

3. Because dimg (V') = 2" and {xs}scjn) is a set of 2" normal, orthogonal vectors in V, then it
must be an orthonormal basis for V. O

2 Useful Fourier analytic formulas

As we’ve established, any Boolean function f(xz) can be expressed as f(z) = 3 gcpy f(S)xs(2).
Now we will make several observations that follow from this. -

Observation 2.1. f(S) = (f, xs).

This follows from the linearity of expectation:

(fixs) = < f(T)XS($)7Xs>
T

The final equality follows from the orthogonality of the basis { xs} — i.e., that all terms (x7, xs) =0
if S £ T. With this fact, we can see that

fS)=(fxs)= E [f(z)xs(@)]

ze{-1,1}"
This is the inverse Fourier transform and will be useful throughout the course.

Observation 2.2. If f is Boolean valued, then f(S) = Pry[f(z) = xs(x)] — Pra[f(z) # xs(z)].

This directly follows from the definition of expectation. Because both functions output {—1,1},
then f(x)xs(z) =1if f(z) = xs(z) and f(z)xs(z) = —1 otherwise. Thus,

1
[f@)xs(@)] = o > fla)xs(x)

rze{—1,1}"
{ ) ze{-1,1}"

1 1

x: f(x)=xs () v f(2)#xs ()
= Pr [flx)=xs]— Pr _[f(z)# xs]

ze{-1,1}" ze{—1,1}n
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Observation 2.3. E,[f(z)] = f(0).

This is derived by using the linearity of expectation and noting that E,[xs(z)] = 0 for any S # 0.

SC[n]

= > f9) _E | [xs()

xG{EEi,l}"[f(m)] - xe{lEi,l}" {Z f(S)XS(m)]

71’1}71
SC[n]

= E O
= j0)

The final equality comes from the choice that yg(x) =1 for all x € {—1,1}".
Observation 2.4 (Parseval’s Identity). E.[f(z)%] = (f, f) = > 5Cn] £(9)2.

This is a direct result of the linearity of the inner product and the orthogonality of the {xg} basis.

of) = < S Ao Y f<T>XT<x>>

SC[n] TC[n]

= FS)F(T) (xs (), xr(x))

Observation 2.5. Var[f(2)] = > gcin 50 F(S)2.

This follows directly from the combination of Observations 2.3 and 2.4.

Vareplf@l = E @)= _E [f@)
= > £(8)* - f0)
SC[n]
= Y. f5)?
SCln],S#0

Observation 2.6 (Plancheral Theorem). Eg[f(z)g(2)] = (f,9) = > gcpy) F(9)4(S).

This follows exactly the same derivation as Observation 2.4 substituting f(T") with §(T).

Observation 2.7. If f is Boolean valued, then 3 gcp, f(8)2=1.

This is a direct corollary to Observation 2.4, as a Boolean valued f has E,[f(7)?] = 1.
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3 Property Testing

A property tester is an algorithm with black box access to a function which decides whether that
function exhibits some property. Properties are defined as be a collection of functions.

We begin by defining a distance measure for Boolean functions and properties, then provide a
formal definition for a tester.

Definition 3.1. Given f,g:Fy — Fa, we define their distance to be

dist(f,g) = Pr [f(z) # g(a)]

z+Fy
Given property P C {f : Fy — Fa}, we define a function’s distance to that property to be

dist(f, P) = min dist(f,g).
geP

Definition 3.2. A randomized algorithm A is an (r, \)-tester for property P if, for all f : Fy — Fa,
AT makes at most r queries and

1. If f € P, then Pr[Af accepts] = 1

2. If f ¢ P, then Pr[Al rejects] > X - dist(f, P)

where the probabilities are over the randomness of A.

3.1 Linearity Testing

Now we turn to a specific property and a tester for it. Given black box access to some Boolean
function, we would like to make a small (constant) number of queries to determine if the function
is linear. That is to say, it belongs to the property

LIN ={f :F5 = Fa [Va,y € Fy, f(z+y) = f2)+ f(y)}

Our tester for LIN is from Blum, Luby, Rubinfeld 90 and so is called the BLR Test. To test for

linearity, simply sample two random elements x,y & F% and accept if and only if f(z) + f(y) =
f@+y).

Theorem 3.3. The BLR test is a (3, 1)-tester for LIN.

We will prove the above theorem in next class.
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