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1 Better Bounds on the Fourier Spectrum of DNFs via Random
Restrictions

Recall the definition of random restrictions from last lecture. We sample a random restriction
ρ = (J, z) where J ⊆ [n] and z ∈ {±1}n from the distribution of δ-random restrictions, denoted ρn,δ.
Here ρn,δ is the following distribution over (J, z): for all 1 ≤ i ≤ n, we place i ∈ J with probability δ,
independently over all i. We sample z ∼ {±1}n uniformly. Here J represents the coordinates that
are not fixed, and z represents how we fix the coordinates outside J .

Also recall from last lecture, for f ∶ {±1}n → R and some ρ = (J, z), we consider the function f
under the restriction ρ, defined as follows:

fρ(x) ∶= f(xJ , zJc).

In the following, we will consider ρ ∼ ρn,δ (i.e. the random restriction of f).
By direct calculations from first principles, one can readily check the following, which we did

last class:

Claim 1.1. For all S ⊆ [n], Eρ∼ρn,δ
[f̂ρ(S)] = δ∣S∣f̂(S).

Claim 1.2. For all S ⊆ [n], Eρ∼ρn,δ
[f̂ρ(S)2] = ∑W⊆[n] f̂(W )2PJ(W ∩ J = S).

Our goal in this section is for size s DNFs f , to find a bound on k, for which we have ε-
concentration up to degree k. From previous lectures, we have seen for k = O(log( sε)

1
ε
), we have

W ≥k[f] ≤ ε. Here, we aim to have all dependence on ε in k to be polylogarithmic. In particular we
aim for the following:

Goal 1. For size s DNFs f , for k = O(log( sε) log(
1
ε
)), we have W ≥k[f] ≤ ε.

The above will yield improved bounds for PAC learning algorithms in the query model, as
discussed in the prior lecture.

To show Goal 1, we will use the following hammer:

Theorem 1 (Hastad’s Switching Lemma). Suppose f is computable by a width w DNF. Then for
all δ ≤ 1

7 , d ≥ 0, we have

Pρ∼ρn,δ
(DTdepth(fρ) ≥ d) ≤ (7δw)d.

With Hastad’s Switching Lemma, we can establish Goal 1:

Theorem 2. Let f be computable by a size s DNF. Then

W ≥k[f] ≤ ε for k = O(log(s
ε
) log(1

ε
)).
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Proof. We will first do the following standard approximation argument, which is by now in the
course very familiar. By Proposition 1.1, Lecture 13, we can approximate f by a narrow approx-

imator g such that f and g are ε1 close, where g is computable by a width w = log( s
ε1
) DNF.

Suppose we show that W ≥k[g] ≤ ε1 for k = O(log( s
ε1
) log( 1

ε1
)). Choosing ε1 = ε

2 (say) and using

that f, g are ε1 close, we obtain the desired conclusion for f .

Now to establish that W ≥k[g] ≤ ε1 for k = O(log( s
ε1
) log( 1

ε1
)) for g, fix δ = 1

14w , where w =
log( s

ε1
). Consider for any k1 to be set later,

Eρ∼ρn,δ
[W ≥k1[gρ]] = ∑

ρ

Pρ∼ρn,δ
(ρn,δ = ρ)W ≥k1[gρ]. (1)

The motivation behind considering this quantity is that we can understand it via our Fourier
formulas Claim 1.1, Claim 1.2.

We first find an upper bound on (1), aiming to relate it to DTdepth(gρ) and then apply Hastad’s
Switching Lemma. Consider DTdepth(gρ). If DTdepth(gρ) < k1, then W ≥k1[gρ] = 0. Else, since g is
computable by a DNF it is Boolean, so Parseval’s gives W ≥k1[gρ] ≤ 1. This observation, together
with applying Hastad’s Switching Lemma, yields

Eρ∼ρn,δ
[W ≥k1[gρ]] = ∑

ρ

Pρ∼ρn,δ
(ρn,δ = ρ)W ≥k1[gρ] ≤ Pρ∼ρn,δ

(DTdepth(gρ) ≥ k1) ⋅ 1 ≤ (7δw)k1 = (
1

2
)
k1

,

(2)
where the last step uses the definition of δ.

Now choose k1 = log( 1
ε1
) + 1. With this choice of k1, we aim to relate Eρ∼ρn,δ

[W ≥k1[gρ]] to
concentration on g. Repeatedly swapping the order of summation and applying Claim 1.2 in the
third equality, we obtain

Eρ[W ≥k1[gρ]] = Eρ

⎡⎢⎢⎢⎢⎣
∑

S∶∣S∣≥k1

ĝρ(S)2
⎤⎥⎥⎥⎥⎦

= ∑
S∶∣S∣≥k1

Eρ[ĝρ(S)2]

= ∑
S∶∣S∣≥k1

∑
W⊆[n]

ĝ(W )2PJ(W ∩ J = S)

= ∑
W⊆[n]

ĝ(W )2PJ(∣W ∩ J ∣ ≥ k1). (3)

Now consider

k2 = C1 ⋅
k1
δ
,

where C1 is a sufficiently large universal constant. Note for any W with ∣W ∣ ≥ k2, we have

EJ[∣W ∩ J ∣] = ∣W ∣ ⋅ δ ≥ C1k1.

A straightforward application of Chernoff bounds (this is where we use that C1 is a large enough
universal constant; C1 being a universal constant independent of δ follows from the fact that the
variance of a Bernoulli with parameter δ ∈ [0,1] is at most δ − δ2 ≤ 1

4 and that k1 ≥ 1) now gives for
any W with ∣W ∣ ≥ k2,

PJ(∣W ∩ J ∣ ≥ k1) ≥
1

2
.
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Combining with (3), (2) yields

(1
2
)
k1

≥ ∑
W⊆[n]

ĝ(W )2PJ(∣W ∩ J ∣ ≥ k1) ≥
1

2
∑

W⊆[n]∶∣W ∣≥k2

ĝ(W )2 = 1

2
W ≥k2[g].

Recalling our choice of k1, we obtain

1

2
ε1 ≥

1

2
W ≥k2[g] Ô⇒ W ≥k2[g] ≤ ε1.

Recalling the definition of k2, δ, w, and ε1, it is evident that

k2 = O(log(
s

ε1
) log( 1

ε1
)).

Recalling our earlier remarks completes the proof.

The aforementioned technique of random restrictions is quite natural, and we just saw its

usefulness. The spectrum of gρ becomes nice, after ‘going up’ by a factor of 1
δ = O(log(

s
ε1
)) from

k1.

2 Hypercontractivity and Applications

We now start a new topic, hypercontractivity and its applications, a topic originally from functional
analysis.

Recall the Tρ operator on any f ∶ {±1}n → R, defined as follows. We first define the noisy
distribution Nρ(x) for a given x ∈ {±1}n and parameter ρ ∈ [−1,1] as follows: to sample y ∼ Nρ(x),
independently for each i, we let

yi =
⎧⎪⎪⎨⎪⎪⎩

xi ∶ with probability 1
2 +

ρ
2

−xi ∶ with probability 1
2 −

ρ
2 .

We then define the noise operator Tρ (applied on functions) as follows. When the noise operator
is applied to f , we define its output by the function Tρf , which is defined as follows:

Tρf(x) ∶= Ey∼Nρ(x)[f(y)].

Our intuition is that ‘Tρf is smoother than f ’, and we make this quantitative in the following.
To do so, we introduce the following standard definition:

Definition 1 (Lp norms). For p ≥ 1, we define the Lp norm of f ∶ {±1}n → R by

∥f∥p = Ex∼{±1}n[∣f(x)∣p]1/p.

Considering any f, g ∶ {±1}n → R and p ≥ q ≥ 1, we have the following standard properties:

• Triangle Inequality:
∥f + g∥p ≤ ∥f∥p + ∥g∥p.

• Monotonicity:
∥f∥p ≥ ∥f∥q.
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• Hölder: For p, q conjugate exponents (that is, 1
p +

1
q = 1; note this allows p = ∞, q = 1):

⟨f, g⟩ ≤ ∥f∥p∥g∥q.

We can easily prove the following smoothening effect of the noise operator Tρ:

Claim 2.1. For any f ∶ {±1}n → R and ρ ∈ [−1,1],

∥Tρf∥2 ≤ ∥f∥2.

That is, Tρ is a contraction in the L2 norm.

Proof. As established in Lecture 6, we have T̂ρf(S) = f̂(S)ρ∣S∣. Now notice as ∣ρ∣ ≤ 1, irrespective
of its sign,

∥Tρf∥22 = ∑
S⊆[n]

T̂ρf(S)2

= ∑
S⊆[n]

f̂(S)2ρ2∣S∣

≤ ∑
S⊆[n]

f̂(S)2 = ∥f∥22.

However, we want to establish more, that Tρ is hypercontractive: colloquially, Tρf is much
smoother than f . Here, we will quantify this by showing Tρf is smaller than f even when Tρf is
measured with a larger norm. We will see proofs in the following lecture.

Theorem 3 ((2,4) Hypercontractivity Theorem). For all f ∶ {±1}n → R and for ρ = 1
√

3
, we have

∥Tρf∥4 ≤ ∥f∥2.

The above can be proven using first principles.
We also have:

Theorem 4 ((43 ,2) Hypercontractivity Theorem). For all f ∶ {±1}n → R and for ρ = 1
√

3
, we have

∥Tρf∥2 ≤ ∥f∥4/3.

Notice the above two Theorems are defined as the (p, p′) Hypercontractivity Theorem for p < p′.
The typically smaller p-norm ∥⋅∥p is used to measure f . The smoothening effect of Tρ is strongly
asserted, as the p-norm in fact upper bounds the typically larger p′-norm ∥⋅∥p′ , which we use to
measure Tρf .

The (43 ,2) Hypercontractivity Theorem in fact follows from the (2,4) Hypercontractivity Theo-
rem by Hölder’s Inequality. Moreover, it turns out the (43 ,2) Hypercontractivity Theorem is enough
to prove the KKL Theorem.
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