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1 Disjunctive Normal Form

We start by recalling what a disjunctive normal form is.

Definition 1.1 (DNFs). A DNF (disjunctive normal form) formula over Boolean variables x1,...,x,
is defined to be a logical OR of terms, each of which is a logical AND of literals. A literal is either a
variable x; or its logical negation X;. The number of literals in a term is called its width. We will identify
a DNF formula with the Boolean function f :{0,1}" — {0, 1} it computes.

Definition 1.2 (size, width). The size of a DNF formula is its number of terms. The width is the
maximum width of its terms.

Furthermore, note that the input length is fixed for a DNF as it is a formula over finitely many
Boolean variables. So, to recognize an arbitrary L C {0,1}* we would need multiple DNFs, one
for each possible size of the input. This is the sense in which DNFs are a non-uniform model of
computation. More formally,

Definition 1.3 (Non-Uniform Models of Computation). A family of DNFs {C,},>o computes a lan-
guage L C {0, 1}*, if the following holds:

Yn>0. xe€{0,1}", L(x)=C,(x).
Additionally, any language L C {0, 1}" naturally corresponds to a Boolean function,
f(x)=1{xeL}.
Note also that any Boolean-valued function admits a DNF representation.
Lemma 1.4. Any f :{0,1}" — {0, 1} can be computed by a DNF of size at most 2" and width at most n.

Proof. We create a term T, for each of the 2" possible inputs x € {0,1}". The term T, will contain
the literal x; if x; = 1 and x; if x; = 0.
O

2 Spectral Concentration for DNFs

Theorem 2.1. Suppose f :{0,1}" — {0, 1} that is computable by a width w DNF. Then we have
I(f) < 2w.
Proof. Recall the sensitivity of f at x,

s(f,x) = #neighbors of x on the Hamming cube that are colored differently by f

= ) 1Ay =1} 1{f@) = f(x)

y€{0,1}"
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For convenience, we define

Then, consider,

Note next that,

Since x is uniformly distributed, this then implies that the expectations above are equal,

I(f) = 2E[s1(f,x)].

So it suffices to show that E,[s{(f,x)] < w. If f(x) =1 then at least one term T in the DNF rep-
resentation of f must be made true by x. Note that if you change the value of a literal x; that
isn’t present in the term T, the value of f(x®) will still be 1. Thus, any y such that f(y) = 0 and
A(x,y) = 1 must differ from x in one of the literals present in T. Since there are at most w literals
in T, we note that s;(f,x) <w. Thus,

I(f) < 2w.

There are a few immediate corollaries from this.

Corollary 2.2. Suppose f : {0,1}" — {0, 1} is computable by a width w DNE, Then we get that W=K(f) <
€ where K = 2w/e and € > 0.

Proof. Recall that the Fourier spectrum of f is e-concentrated on degree up to I(f)/e and use the
fact that I(f) < 2w.
O

Corollary 2.3. PAC-learning for width w-DNF in the random example model with sample time n°/®),

Proof. This follows from using the Low-Degree Algorithm with k = 4w/e and noting that f is e/2
concentrated on degree up to 2I(f)/e.
O
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Next, we will show that a small DNF is well-approximated by a narrow DNF. The intuition
here is that removing a single term T of a DNF only changes the entire DNFs value on at most
1/2"% fraction of inputs (the inputs that makes all terms in T true). So, the underlying idea is to
prune high-width terms of our DNF.

Lemma 2.4 (small to narrow). Suppose f :{0,1}" — {0, 1} computable by size s DNF. Then there exists
g :{0,1}* — {0, 1} such that g is computable by width log(s/e€) DNFs and

Pr(f (x) = g(x)) = dist(f,g) <.

Proof. Let w = log(s/0). Then let g = V?;lTsi be the Boolean function obtained from f = Vi_| T
by removing all terms of width > w. Since every term in the DNF of g is a term in the DNF
representation of f, we note that if g(x) = 1 then f(x) = 1. Furthermore note that for a T; with
widh > w, we have Pr(T; = 1) <27%. There are at must s such T;, so using a union bound

Pr(3T; =1, such that width of T; is >w) <s-27% <.
X

Note that g(x) # f(x) only when a term that is present in f but not in g is made true by x. Thus,
= f(x)] = PrEIT =1with T;is >w) <.

This has ramifications with respect to concentration of and our ability to learn f.

Lemma 2.5. Suppose the Fourier spectrum of g : {0,1}" — {0,1} is €;-concentrated on F such that
f :{0,1}" — {0, 1} satisfies || f —g||% < €. Then the Fourier spectrum of f is 2- (e + €;) concentrated on
F.

Proof. Using the fact that (a+ b)? < 2(a® + b?), we obtain for any S € F
£(8)? <2(8(8)+(f(5)-8(5)?)

Summing over all S € F, we obtain

Y FS1<2 ) #S7+ ) (F(5)-g(S)?| < 2er+ea).

SeF SeF SeF
]

Corollary 2.6. Suppose f :{0,1}" — {0,1} is computable by a size s DNF. Then W=K(f) < e for K =
O(Llog(£)).
Proof. Note that, by Lemma 2.4, f is €/4-close to a g with width log(4s/e). This gives us ||f — gl =

dist(f, g) < e/4. Note that, by Corollary 2.2, the g is e/4-concentrated for € = 8log(4s/€)/e. Then,
by Lemma 2.5, we get that

Corollary 2.7. PAC-learning for size s DNF with sample complexity n©(1/€10g(s/€))

Proof. Again, this follows from using the Low-Degree Algorithm with k = O(log(s/e€)/€). ]
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