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1 Disjunctive Normal Form

We start by recalling what a disjunctive normal form is.

Definition 1.1 (DNFs). A DNF (disjunctive normal form) formula over Boolean variables x1, . . . ,xn
is defined to be a logical OR of terms, each of which is a logical AND of literals. A literal is either a
variable xi or its logical negation xi . The number of literals in a term is called its width. We will identify
a DNF formula with the Boolean function f : {0,1}n→ {0,1} it computes.

Definition 1.2 (size, width). The size of a DNF formula is its number of terms. The width is the
maximum width of its terms.

Furthermore, note that the input length is fixed for a DNF as it is a formula over finitely many
Boolean variables. So, to recognize an arbitrary L ⊆ {0,1}⋆ we would need multiple DNFs, one
for each possible size of the input. This is the sense in which DNFs are a non-uniform model of
computation. More formally,

Definition 1.3 (Non-Uniform Models of Computation). A family of DNFs {Cn}n≥0 computes a lan-
guage L ⊆ {0,1}⋆ , if the following holds:

∀n ≥ 0. x ∈ {0,1}n, L(x) = Cn(x).

Additionally, any language L ⊆ {0,1}n naturally corresponds to a Boolean function,

f (x) = 1{x ∈ L}.

Note also that any Boolean-valued function admits a DNF representation.

Lemma 1.4. Any f : {0,1}n→ {0,1} can be computed by a DNF of size at most 2n and width at most n.

Proof. We create a term Tx for each of the 2n possible inputs x ∈ {0,1}n. The term Tx will contain
the literal xi if xi = 1 and xi if xi = 0.

2 Spectral Concentration for DNFs

Theorem 2.1. Suppose f : {0,1}n→ {0,1} that is computable by a width w DNF. Then we have

I(f ) ≤ 2w.

Proof. Recall the sensitivity of f at x,

s(f ,x) = #neighbors of x on the Hamming cube that are colored differently by f

=
∑

y∈{0,1}n
1{∆(x,y) = 1} ·1{f (y) , f (x)}
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For convenience, we define

s0(f ,x) = s(f ,x) ·1{f (x) = 0},
s1(f ,x) = s(f ,x) ·1{f (x) = 1}.

Then, consider,

I(f ) = Ex[s(f ,x)]

= Ex[s0(f ,x) + s1(f ,x)]

= Ex[s0(f ,x)] +Ex[s1(f ,x)].

Note next that, ∑
x

s0(f ,x) =
∑
x

s(f ,x) ·1{f (x) = 0}

=
∑
x

∑
y

1{∆(x,y) = 1} ·1{f (y) , f (x)} ·1{f (x) = 0}

=
∑
y

s(f ,y) ·1{f (y) , 1}

=
∑
y

s1(f ,y).

Since x is uniformly distributed, this then implies that the expectations above are equal,

I(f ) = 2Ex[s1(f ,x)].

So it suffices to show that Ex[s1(f ,x)] ≤ w. If f (x) = 1 then at least one term T in the DNF rep-
resentation of f must be made true by x. Note that if you change the value of a literal xi that
isn’t present in the term T , the value of f (x⊕i) will still be 1. Thus, any y such that f (y) = 0 and
∆(x,y) = 1 must differ from x in one of the literals present in T . Since there are at most w literals
in T , we note that s1(f ,x) ≤ w. Thus,

I(f ) ≤ 2w.

There are a few immediate corollaries from this.

Corollary 2.2. Suppose f : {0,1}n→ {0,1} is computable by a width w DNF, Then we get that W ≥k(f ) <
ϵ where K = 2w/ϵ and ϵ > 0.

Proof. Recall that the Fourier spectrum of f is ϵ-concentrated on degree up to I(f )/ϵ and use the
fact that I(f ) ≤ 2w.

Corollary 2.3. PAC-learning for width w-DNF in the random example model with sample time nO(w/ϵ).

Proof. This follows from using the Low-Degree Algorithm with k = 4w/ϵ and noting that f is ϵ/2
concentrated on degree up to 2I(f )/ϵ.
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Next, we will show that a small DNF is well-approximated by a narrow DNF. The intuition
here is that removing a single term T of a DNF only changes the entire DNFs value on at most
1/2w fraction of inputs (the inputs that makes all terms in T true). So, the underlying idea is to
prune high-width terms of our DNF.

Lemma 2.4 (small to narrow). Suppose f : {0,1}n→ {0,1} computable by size s DNF. Then there exists
g : {0,1}n→ {0,1} such that g is computable by width log(s/ϵ) DNFs and

Pr
x

(f (x) , g(x)) = dist(f ,g) ≤ δ.

Proof. Let w = log(s/δ). Then let g = ∨s′i=1Tsi be the Boolean function obtained from f = ∨si=1Ti
by removing all terms of width > w. Since every term in the DNF of g is a term in the DNF
representation of f , we note that if g(x) = 1 then f (x) = 1. Furthermore note that for a Ti with
widh > w, we have Pr(Ti = 1) ≤ 2−w. There are at must s such Ti , so using a union bound

Pr
x

(∃Ti = 1, such that width of Ti is > w) ≤ s · 2−w ≤ δ.

Note that g(x) , f (x) only when a term that is present in f but not in g is made true by x. Thus,

Pr
x

(g(x) , f (x)] = Pr
x

(∃Ti = 1 with Ti is > w) ≤ δ.

This has ramifications with respect to concentration of and our ability to learn f .

Lemma 2.5. Suppose the Fourier spectrum of g : {0,1}n → {0,1} is ϵ1-concentrated on F such that
f : {0,1}n→ {0,1} satisfies ∥f − g∥22 ≤ ϵ2. Then the Fourier spectrum of f is 2 · (ϵ1 + ϵ2) concentrated on
F .

Proof. Using the fact that (a+ b)2 ≤ 2(a2 + b2), we obtain for any S ∈ F

f̂ (S)2 ≤ 2
(
ĝ(S) + (f̂ (S)− ĝ(S))2

)
Summing over all S ∈ F , we obtain∑

S∈F
f̂ (S) ≤ 2

∑
S∈F

ĝ(S)2 +
∑
S∈F

(f̂ (S)− ĝ(S))2

 ≤ 2(ϵ1 + ϵ2).

Corollary 2.6. Suppose f : {0,1}n → {0,1} is computable by a size s DNF. Then W ≥K (f ) ≤ ϵ for K =
O
(

1
ϵ log

(
s
ϵ

))
.

Proof. Note that, by Lemma 2.4, f is ϵ/4-close to a g with width log(4s/ϵ). This gives us ∥f − g∥22 =
dist(f ,g) ≤ ϵ/4. Note that, by Corollary 2.2, the g is ϵ/4-concentrated for ϵ = 8log(4s/ϵ)/ϵ. Then,
by Lemma 2.5, we get that

W ≥K (f ) ≤ 2
(ϵ

4
+
ϵ
4

)
= ϵ.

Corollary 2.7. PAC-learning for size s DNF with sample complexity nO(1/ϵ log(s/ϵ))

Proof. Again, this follows from using the Low-Degree Algorithm with k = O(log(s/ϵ)/ϵ).
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