CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 11: Goldreich-Levin Algorithm and DNFs
Lecturer: Eshan Chattopadhyay Scribe: Ellie Fassman

1 Goldreich-Levin Algorithm

The Goldreich-Levin Algorithm is a randomized procedure to find heavy Fourier coefficients of a
Boolean function f efficiently using query access to f. The setup is that we have query access to
f{-1,1}" - {—1,1} and a parameter § which is essentially defines the granularity of the sieve
we are using to find the heavy Fourier coefficients. The goal is to output a list L r=1{S1,...,5m}
such that with probability at least %, the following two properties hold:

o If |f(S)| > § then S € Ly (PROPERTY 1).
o If S € Ly then |f(S)| > $ (PROPERTY 2).

To help us with the description of this algorithm, let us define By g :== {T": T'N [k] = S} for all
k € [n] and S C [k]. Note that |Byg| = 2"%, By is power set of n, and the weight of a bucket

By,s is w(Bys) = Srep, o f ()2

Algorithm 1 Goldreich-Levin Algorithm
Initialize B = By (B is a collection of buckets).
while there exists some By ¢ € B such that By g contains more than one set do
Note that By s = Brt1,5U Bk+1,Su{k+1}- Let B? := Bii1,s, B! = Bk+1,Su{k+1}-
Remove By, g from B.

Measure w(B°), w(B') with accuracy %.
Add Bi to B if w(B') > £.

end while

Output B.

By running this algorithm we can represent the sieving of as a complete binary tree. This tree
has height at most n since there are 2" buckets at the root, and each layer we make a binary split.
Additionally, we can make the following observation:

Observation 1.1. At any level k, the buckets are disjoint.

Corollary 1.2. The number of heavy buckets at any level k is < (;%.

The corollary above can be shown by Parseval’s Theorem, in addition to the fact that if B is

a heavy bucket, w(B) > % — % = % where % is the threshold weight for heaviness and % is the

accuracy. Thus we can see that the total number of heavy buckets is n(;% +1 (the +1 term accounts
for the root node).

We are measuring at most < O(5z) buckets and the buckets are estimated to % accuracy with

O(%log(%)) samples. Note that = is the confidence parameter where v = %%, for some large

constant c. Thus, the run time of this algorithm can be bounded by O(n(log(n) + log(1/6))/85).

Lecture 11: Goldreich-Levin Algorithm and DNFs 2

To prove the correctness of this algorithm, we must show that PROPERTY 1 and PROPERTY
2 hold. We assume that all Fourier coefficients are estimated within the accuracy bounds (adding
the error via union bound to the failure probability of the algorithm).

Proof. Suppose |f(S)] > 8. We are trying to show that if the Fourier coefficient is heavy, then it
is in the final output set. We know that S € Byg. S € L unless it has been in an eliminated

bucket (one that is deemed as "light”), which means w(By 5})<§. However note that because
w(Bygy) = f(S)? > 62, and we measure with accuracy 62/4, the measurement will be at least
62 — % = %52>§. So set S will not be eliminated. Thus S € L; (PROPERTY 1).

Now suppose S € f/f. We are trying to show that if S is in the final set, then it’s Fourier
coefficient is heavy. If § € Ly, then f(S)? = w(Bygy) > % Thus |f(S)| > § (PROPERTY 2). O

Now, regarding the true weight of the buckets:

Claim 1.3. w(By,s) =E,, . (- 11)% onqo1,13n-5 L (U1, 2) (2, 2) X (y1) x5 (42)]

Now let’s prove the claim.

Proof. By 1,13k znf—1,13n-+ L (U1, 2) f (Y2, 2) x5 (y1) x5 (y2)]

= By, o130 onf 1y (B mo) f (1) F(T2) X7 (91, 2)x7 (92, 2) X (1) xs (y2)]
= X1 o) f (1) F(T2)Ey, Dry g (Y1) xs (Y1) Eys Xronpe (Y2) X s W2)IEz X7y Akt 1,0) () XTon k1, (2)]

Where in the last line, the first expectation (over y;) has nonzero terms only when 77 N [k] = S
and the second expectation (over y2) has nonzero terms only when 75 N [k] = S. This effectively
forces the same intersection for the first k& coordinates, which is S. Similarly for the last expec-
tation (over z) the nonzero terms effectively force the same intersection for the last k 4+ 1,...,n
coordinates, which we call W.

Thus the above terms = Ewg{k+1,...,n}f(5 U W)? = w(By,g) which proves the claim. O

2 DNFs

The next complexity class we care about are DNFs (disjunctive normal form) which are the OR of
terms and AND of literals.

For example: (z1 A @2 Axq) V (xa A T13 Axoy AT22) V...

The complexity measures of DNFs are width: the max width of a term in the DNF, and size:
the number of terms in the DNF.

Claim 2.1. Any f: {0,1}" — {0,1} can be computed by a width w < n, size s < 2" DNF.

Proof. Go through the truth table of this function f, create a clause for every time the function
evaluates to 1. OR all of these clauses. O

Next class we will discuss polynomial-sized DNFs.

	Goldreich-Levin Algorithm
	DNFs

