
CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 11: Goldreich-Levin Algorithm and DNFs

Lecturer: Eshan Chattopadhyay Scribe: Ellie Fassman

1 Goldreich-Levin Algorithm

The Goldreich-Levin Algorithm is a randomized procedure to find heavy Fourier coefficients of a
Boolean function f efficiently using query access to f . The setup is that we have query access to
f : {−1, 1}n → {−1, 1} and a parameter δ which is essentially defines the granularity of the sieve
we are using to find the heavy Fourier coefficients. The goal is to output a list L̃f = {S1, . . . , Sm}
such that with probability at least 2

3 , the following two properties hold:

• If |f̂(S)| ≥ δ then S ∈ L̃f (PROPERTY 1).

• If S ∈ L̃f then |f̂(S)| ≥ δ
2 (PROPERTY 2).

To help us with the description of this algorithm, let us define Bk,S := {T : T ∩ [k] = S} for all
k ∈ [n] and S ⊆ [k]. Note that |Bk,S | = 2n−k, B0,∅ is power set of n, and the weight of a bucket

Bk,S is w(Bk,S) = ΣT∈Bk,S
f̂(T)2.

Algorithm 1 Goldreich-Levin Algorithm

Initialize B = B0,∅ (B is a collection of buckets).
while there exists some Bk,S ∈ B such that Bk,S contains more than one set do

Note that Bk,S = Bk+1,S ∪Bk+1,S∪{k+1}. Let B
0 := Bk+1,S , B

1 := Bk+1,S∪{k+1}.
Remove Bk,S from B.
Measure w(B0), w(B1) with accuracy δ2

4 .

Add Bi to B if w(Bi) ≥ δ2

2 .
end while
Output B.

By running this algorithm we can represent the sieving of as a complete binary tree. This tree
has height at most n since there are 2n buckets at the root, and each layer we make a binary split.
Additionally, we can make the following observation:

Observation 1.1. At any level k, the buckets are disjoint.

Corollary 1.2. The number of heavy buckets at any level k is ≤ 4
δ2
.

The corollary above can be shown by Parseval’s Theorem, in addition to the fact that if B is
a heavy bucket, w(B) ≥ δ2

2 − δ2

4 = δ2

4 where δ2

2 is the threshold weight for heaviness and δ2

4 is the
accuracy. Thus we can see that the total number of heavy buckets is n 4

δ2
+1 (the +1 term accounts

for the root node).

We are measuring at most ≤ O(n
δ2
) buckets and the buckets are estimated to δ2

4 accuracy with

O(1
δ4

log(1γ)) samples. Note that γ is the confidence parameter where γ = 1
c
δ2

n , for some large

constant c. Thus, the run time of this algorithm can be bounded by O(n(log(n) + log(1/δ))/δ6).

1

Lecture 11: Goldreich-Levin Algorithm and DNFs 2

To prove the correctness of this algorithm, we must show that PROPERTY 1 and PROPERTY
2 hold. We assume that all Fourier coefficients are estimated within the accuracy bounds (adding
the error via union bound to the failure probability of the algorithm).

Proof. Suppose |f̂(S)| ≥ δ. We are trying to show that if the Fourier coefficient is heavy, then it
is in the final output set. We know that S ∈ B0,∅. S ∈ L̃f unless it has been in an eliminated

bucket (one that is deemed as ”light”), which means w(B{S})<
δ2

2 . However note that because

w(B{S}) ≥ f̂(S)2 ≥ δ2, and we measure with accuracy δ2/4, the measurement will be at least

δ2 − δ2

4 = 3
4δ

2> δ2

2 . So set S will not be eliminated. Thus S ∈ L̃f (PROPERTY 1).

Now suppose S ∈ L̃f . We are trying to show that if S is in the final set, then it’s Fourier

coefficient is heavy. If S ∈ L̃f , then f̂(S)2 = w(B{S}) ≥ δ2

4 . Thus |f̂(S)| ≥
δ
2 (PROPERTY 2).

Now, regarding the true weight of the buckets:

Claim 1.3. w(Bk,S) = Ey1,y2∼{−1,1}k,z∼{−1,1}n−k [f(y1, z)f(y2, z)χS(y1)χS(y2)]

Now let’s prove the claim.

Proof. Ey1,y2∼{−1,1}k,z∼{−1,1}n−k [f(y1, z)f(y2, z)χS(y1)χS(y2)]

= Ey1,y2∼{−1,1}k,z∼{−1,1}n−k [ΣT1,T2⊆[n]f̂(T1)f̂(T2)χT1(y1, z)χT2(y2, z)χS(y1)χS(y2)]

= ΣT1,T2⊆[n]f̂(T1)f̂(T2)Ey1 [χT1∩[k](y1)χS(y1)]Ey2 [χT2∩[k](y2)χS(y2)]Ez[χT1∩[k+1,...,n](z)χT2∩[k+1,...,n](z)]

Where in the last line, the first expectation (over y1) has nonzero terms only when T1 ∩ [k] = S
and the second expectation (over y2) has nonzero terms only when T2 ∩ [k] = S. This effectively
forces the same intersection for the first k coordinates, which is S. Similarly for the last expec-
tation (over z) the nonzero terms effectively force the same intersection for the last k + 1, . . . , n
coordinates, which we call W .

Thus the above terms = ΣW⊆{k+1,...,n}f̂(S ∪W)2 = w(Bk,S) which proves the claim.

2 DNFs

The next complexity class we care about are DNFs (disjunctive normal form) which are the OR of
terms and AND of literals.

For example: (x1 ∧ x̄2 ∧ x4) ∨ (x2 ∧ x̄13 ∧ x21 ∧ x22) ∨ . . .

The complexity measures of DNFs are width: the max width of a term in the DNF, and size:
the number of terms in the DNF.

Claim 2.1. Any f : {0, 1}n → {0, 1} can be computed by a width w ≤ n, size s ≤ 2n DNF.

Proof. Go through the truth table of this function f , create a clause for every time the function
evaluates to 1. OR all of these clauses.

Next class we will discuss polynomial-sized DNFs.

	Goldreich-Levin Algorithm
	DNFs

