CS 6817: Special Topics in Complexity Theory

Spring 2025

Lecture 11: Goldreich-Levin Algorithm and DNFs

Lecturer: Eshan Chattopadhyay Scribe: Ellie Fassman

1 Goldreich-Levin Algorithm

The Goldreich-Levin Algorithm is a randomized procedure to find heavy Fourier coefficients of a Boolean function f efficiently using query access to f. The setup is that we have query access to $f: \{-1,1\}^n \to \{-1,1\}$ and a parameter δ which is essentially defines the granularity of the sieve we are using to find the heavy Fourier coefficients. The goal is to output a list $\tilde{L}_f = \{S_1, \ldots, S_m\}$ such that with probability at least $\frac{2}{3}$, the following two properties hold:

- If $|\hat{f}(S)| \geq \delta$ then $S \in \tilde{L}_f$ (PROPERTY 1).
- If $S \in \tilde{L}_f$ then $|\hat{f}(S)| \geq \frac{\delta}{2}$ (PROPERTY 2).

To help us with the description of this algorithm, let us define $B_{k,S} := \{T : T \cap [k] = S\}$ for all $k \in [n]$ and $S \subseteq [k]$. Note that $|B_{k,S}| = 2^{n-k}$, $B_{0,\emptyset}$ is power set of n, and the weight of a bucket $B_{k,S}$ is $w(B_{k,S}) = \sum_{T \in B_{k,S}} \hat{f}(T)^2$.

Algorithm 1 Goldreich-Levin Algorithm

```
Initialize \mathcal{B}=B_{0,\emptyset} (\mathcal{B} is a collection of buckets). 

while there exists some B_{k,S}\in\mathcal{B} such that B_{k,S} contains more than one set do Note that B_{k,S}=B_{k+1,S}\cup B_{k+1,S\cup\{k+1\}}. Let B^0\coloneqq B_{k+1,S}, B^1\coloneqq B_{k+1,S\cup\{k+1\}}. Remove B_{k,S} from \mathcal{B}. 

Measure w(B^0), w(B^1) with accuracy \frac{\delta^2}{4}. 

Add B^i to \mathcal{B} if w(B^i)\geq \frac{\delta^2}{2}. 

end while Output \mathcal{B}.
```

By running this algorithm we can represent the sieving of as a complete binary tree. This tree has height at most n since there are 2^n buckets at the root, and each layer we make a binary split. Additionally, we can make the following observation:

Observation 1.1. At any level k, the buckets are disjoint.

Corollary 1.2. The number of heavy buckets at any level k is $\leq \frac{4}{\delta^2}$.

The corollary above can be shown by Parseval's Theorem, in addition to the fact that if B is a heavy bucket, $w(B) \geq \frac{\delta^2}{2} - \frac{\delta^2}{4} = \frac{\delta^2}{4}$ where $\frac{\delta^2}{2}$ is the threshold weight for heaviness and $\frac{\delta^2}{4}$ is the accuracy. Thus we can see that the total number of heavy buckets is $n\frac{4}{\delta^2} + 1$ (the +1 term accounts for the root node).

We are measuring at most $\leq \mathcal{O}(\frac{n}{\delta^2})$ buckets and the buckets are estimated to $\frac{\delta^2}{4}$ accuracy with $\mathcal{O}(\frac{1}{\delta^4}\log(\frac{1}{\gamma}))$ samples. Note that γ is the confidence parameter where $\gamma = \frac{1}{c}\frac{\delta^2}{n}$, for some large constant c. Thus, the run time of this algorithm can be bounded by $O(n(\log(n) + \log(1/\delta))/\delta^6)$.

To prove the correctness of this algorithm, we must show that PROPERTY 1 and PROPERTY 2 hold. We assume that all Fourier coefficients are estimated within the accuracy bounds (adding the error via union bound to the failure probability of the algorithm).

Proof. Suppose $|\hat{f}(S)| \geq \delta$. We are trying to show that if the Fourier coefficient is heavy, then it is in the final output set. We know that $S \in B_{0,\emptyset}$. $S \in \tilde{L}_f$ unless it has been in an eliminated bucket (one that is deemed as "light"), which means $w(B_{\{S\}}) < \frac{\delta^2}{2}$. However note that because $w(B_{\{S\}}) \geq \hat{f}(S)^2 \geq \delta^2$, and we measure with accuracy $\delta^2/4$, the measurement will be at least $\delta^2 - \frac{\delta^2}{4} = \frac{3}{4}\delta^2 > \frac{\delta^2}{2}$. So set S will not be eliminated. Thus $S \in \tilde{L}_f$ (PROPERTY 1).

Now suppose $S \in \tilde{L}_f$. We are trying to show that if S is in the final set, then it's Fourier coefficient is heavy. If $S \in \tilde{L}_f$, then $\hat{f}(S)^2 = w(B_{\{S\}}) \ge \frac{\delta^2}{4}$. Thus $|\hat{f}(S)| \ge \frac{\delta}{2}$ (PROPERTY 2). \square

Now, regarding the true weight of the buckets:

Claim 1.3.
$$w(B_{k,S}) = \mathbb{E}_{y_1,y_2 \sim \{-1,1\}^k,z \sim \{-1,1\}^{n-k}}[f(y_1,z)f(y_2,z)\chi_S(y_1)\chi_S(y_2)]$$

Now let's prove the claim.

$$\begin{aligned} & \textit{Proof.} \ \ \mathbb{E}_{y_1,y_2 \sim \{-1,1\}^k,z \sim \{-1,1\}^{n-k}}[f(y_1,z)f(y_2,z)\chi_S(y_1)\chi_S(y_2)] \\ &= \mathbb{E}_{y_1,y_2 \sim \{-1,1\}^k,z \sim \{-1,1\}^{n-k}}[\Sigma_{T_1,T_2 \subseteq [n]}\hat{f}(T_1)\hat{f}(T_2)\chi_{T_1}(y_1,z)\chi_{T_2}(y_2,z)\chi_S(y_1)\chi_S(y_2)] \\ &= \Sigma_{T_1,T_2 \subseteq [n]}\hat{f}(T_1)\hat{f}(T_2)\mathbb{E}_{y_1}[\chi_{T_1 \cap [k]}(y_1)\chi_S(y_1)]\mathbb{E}_{y_2}[\chi_{T_2 \cap [k]}(y_2)\chi_S(y_2)]\mathbb{E}_{z}[\chi_{T_1 \cap [k+1,\dots,n]}(z)\chi_{T_2 \cap [k+1,\dots,n]}(z)] \end{aligned}$$

Where in the last line, the first expectation (over y_1) has nonzero terms only when $T_1 \cap [k] = S$ and the second expectation (over y_2) has nonzero terms only when $T_2 \cap [k] = S$. This effectively forces the same intersection for the first k coordinates, which is S. Similarly for the last expectation (over z) the nonzero terms effectively force the same intersection for the last $k+1,\ldots,n$ coordinates, which we call W.

Thus the above terms = $\sum_{W \subset \{k+1,\dots,n\}} \hat{f}(S \cup W)^2 = w(B_{k,S})$ which proves the claim.

2 DNFs

The next complexity class we care about are DNFs (disjunctive normal form) which are the OR of terms and AND of literals.

For example:
$$(x_1 \land \bar{x_2} \land x_4) \lor (x_2 \land \bar{x_{13}} \land x_{21} \land x_{22}) \lor \dots$$

The complexity measures of DNFs are **width**: the max width of a term in the DNF, and **size**: the number of terms in the DNF.

Claim 2.1. Any
$$f: \{0,1\}^n \to \{0,1\}$$
 can be computed by a width $w \le n$, size $s \le 2^n$ DNF.

Proof. Go through the truth table of this function f, create a clause for every time the function evaluates to 1. OR all of these clauses.

Next class we will discuss polynomial-sized DNFs.