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1 Introduction, Basic Notions

Definition 1.1. A Boolean function is a real-valued function from the hypercube {0, 1}n, or {−1, 1}n,
to R.

The choice between {−1, 1}n and {0, 1}n seems arbitrary. But we’ll see later that {−1, 1}n
is more convenient. We will connect Theorem 1.8 to the usual Fourier expansions of functions
f : Rd → R, but for this we need to endow the hypercube with a group operation, and then
look at the characters of that group (to be seen later). For {−1, 1}n we can use component-wise
multiplication as the group operation, while for {0, 1}n we can use component-wise addition (mod
2).

In the end, the two sets are related by a simple transformation: for each component of a point
x ∈ {0, 1}n , send 0 7→ 1 and 1 7→ −1. One representation of this map is

x 7→ (−1)x,

to be interpreted compontent-wise. Another representation is

x 7→ 2x− 1.

This mapping is linear and easily invertible which is convenient. Either way, we have a (linear)
bijective correspondence between {−1, 1}n and {0, 1}n.

Remark 1.2. Occasionally we’ll refer to the components xi of a point x ∈ {−1, 1}n as bits.

Example 1.3. The AND function, which takes x ∈ {−1, 1}n and returns −1 if xi = −1 for all bits
xi, and returns 1 otherwise. Explicitly,

AND(x) = 1− 2

n∏
i=1

1− xi
2

.

As a sanity check: if xi = 1 for any i, then the product above is 0 and so And(x) = 1. If xi = −1
for all bits, then the product above is 1, meaning And(x) = −1.

Example 1.4. The PARITY function, which takes x ∈ {−1, 1}n and returns −1 if there are an odd
number of bits wizth xi = −1. Explicitly,

PARITY(x) =
n∏

i=1

xi

We can also consider Boolean functions as elements of a vector space. To see this, first consider
a finite dimensional vector space V spanned by basis elements {ei}ni=1. Then for any v ∈ V we can
write v =

∑
i eivi. From here we can consider v as a function v : {1, · · · , n} → R where v(i) = vi.

We can run the above argument backwards to say that the Boolean functions f : {−1, 1}n → R
are elements of a 2n dimensional vector space V . But what’s a good basis? And is there still a
“natural” inner product to use, like a · b =

∑
i aibi in Rn?
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Definition 1.5. A real multilinear polynomial p : Rn → R is of the form:

p(x) =
∑
S⊆[n]

CSx
S

where xS =
∏

i∈S xi, CS ∈ R, [n] = {1, · · · , n} and x∅ = 1.

Remark 1.6. These polynomials are really affine-linear in each of its components. (check that
p(x1, · · · , λxk, · · · , x2n) 6= λp(x) by considering something like p(x1, x2) = 1 + x1 + x1x2).

Theorem 1.7. The monomials xS form a basis for Boolean functions. In other words, for any
f : {−1, 1}n → R, there exists a unique multilinear polynomial p such that

f(x) = p(x) for all x ∈ {−1, 1}n.

Proof. We will proceed in two steps. First, we’ll show there exists a polynomial p that agrees with
f on the hypercube. Then, we show it’s unique.

To start with, since the domain of f is discrete, we can decompose f into a linear combination
its possible values,

f(x) =
∑

a∈{−1,1}n
f(a)1x=a(x).

If we can show that 1x=a(x) can be written as a finite linear combination of monomials, then we’ve
completed the first step. Taking a hint from the And function in example 1.3, we can write

1x=a(x) =
n∏

i=1

1 + aixi
2

.

Indeed, if ai 6= xi, then aixi = −1 and the product is 0. If ai = xi for all i , then aixi = 1 for all i
and the product is 1. Therefore

f(x) =
∑

a∈{−1,1}n
f(a)

n∏
i=1

1 + aixi
2

=
∑
S⊆[n]

CSx
S ,

for some CS ∈ R. This last equality is valid since any term of the sum involves only monomials in
xi; therefore we may group terms with common monomial terms

∏
i∈S xi.

For uniqueness, we will show that xS are orthonormal with respect to an inner product. Clearly
the size of {xS}S⊆[n] is 2n, so orthogonality will imply its a basis. We’ll use the inner product

〈f, g〉 =
1

2n

∑
x∈{−1,1}n

f(x)g(x) = E[f(X)g(X)]

where X is a uniform random variable over the hypercube (check: the inner product axioms).
Choosing f(x) = xS and g(x) = xT for two subsets S, T ⊆ [n] , we have

E[XSXT ] =
1

2n

∑
x∈{−1,1}n

xSxT .

We can put xSxT into the form xU where U ⊆ [n] is a related subset,

xSxT =
∏
i∈S

xi
∏
j∈T

xj =
∏

i∈S∪T\(S∩T )

xi.



Lecture 1: Jan 21, 2025 3

To check the last equality, if i ∈ S ∩ T , then xi appears twice in the product and x2i = 1, so the
components in the intersection S ∩ T can be excluded from the product. So,

E[XSXT ] =
1

2n

∑
x∈{−1,1}n

xU .

Suppose first that U 6= ∅. Then we can find some k ∈ U , and∑
x∈{−1,1}n

xU =
∑

x :xk=1

xU +
∑

y : yk=1

yU = 0

The last equality follows by 1. xU = −yU where y is equal to x but with the kth bit flipped, and
2. bit flipping is a bijection so the sizes of the sums are the same.

If instead U = ∅, then the above reduces to 1. Altogether this means xS and xT are orthogonal,
and {xS}S⊆[n] is a basis for the Boolean functions, so any representation

f(x) =
∑
S

CSx
S

is unique.

Definition 1.8. The coefficients CS appearing in the unique polynomial p(x) are the Fourier coef-
ficients of f ,

f̂(S) = CS ,

In this notation, the theorem reads: for any Boolean function f : {−1, 1}n → R,

f(x) =
∑
S⊆[n]

f̂(S)xS
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