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1 Introduction, Basic Notions

Definition 1.1. A Boolean function is a real-valued function from the hypercube {0,1}"™, or {—1,1}",
to R.

The choice between {—1,1}" and {0,1}" seems arbitrary. But we’ll see later that {—1,1}"
is more convenient. We will connect Theorem 1.8 to the usual Fourier expansions of functions
f : R4 = R, but for this we need to endow the hypercube with a group operation, and then
look at the characters of that group (to be seen later). For {—1,1}" we can use component-wise
multiplication as the group operation, while for {0,1}" we can use component-wise addition (mod
2).

In the end, the two sets are related by a simple transformation: for each component of a point
x€40,1}" ,send 0 — 1 and 1 — —1. One representation of this map is

x = (=1)%,
to be interpreted compontent-wise. Another representation is
T2z — 1.

This mapping is linear and easily invertible which is convenient. Either way, we have a (linear)
bijective correspondence between {—1,1}" and {0, 1}".

Remark 1.2. Occasionally we’ll refer to the components x; of a point x € {—1,1}" as bits.

Example 1.3. The AND function, which takes x € {—1,1}" and returns —1 if x; = —1 for all bits
x;, and returns 1 otherwise. Explicitly,

1—1’1'
5

n

AND(z) =1-2]]

=1

As a sanity check: if x; = 1 for any i, then the product above is 0 and so And(z) = 1. If z; = —1
for all bits, then the product above is 1, meaning And(z) = —1.

Example 1.4. The PARITY function, which takes x € {—1,1}" and returns —1 if there are an odd
number of bits wizth x; = —1. Explicitly,

n
PARITY(z) = [ ]
=1

We can also consider Boolean functions as elements of a vector space. To see this, first consider
a finite dimensional vector space V' spanned by basis elements {e;}* ;. Then for any v € V' we can
write v = ), e;v;. From here we can consider v as a function v : {1,--- ,n} — R where v(i) = v;.

We can run the above argument backwards to say that the Boolean functions f: {—1,1}" - R
are elements of a 2" dimensional vector space V. But what’s a good basis? And is there still a
“natural” inner product to use, like a - b =), a;b; in R™?
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Definition 1.5. A real multilinear polynomial p : R™ — R is of the form:

p(z) = Z Csz®

SCn]
where 2% = [[;cg @i, Cs €R, [n] ={1,--+ ,n} and =1,

Remark 1.6. These polynomials are really affine-linear in each of its components. (check that
p(x1, -, AT, -+, xon) # Ap(x) by considering something like p(x1,x2) =1+ x1 + z122).

Theorem 1.7. The monomials z° form a basis for Boolean functions. In other words, for any
fA{=1,1}" = R, there exists a unique multilinear polynomial p such that

f(x)=p(z) forallxe{-11}".

Proof. We will proceed in two steps. First, we’ll show there exists a polynomial p that agrees with
f on the hypercube. Then, we show it’s unique.
To start with, since the domain of f is discrete, we can decompose f into a linear combination
its possible values,
flz) = Z f(a)la=a().

ac{—-1,1}n
If we can show that 1,—,(z) can be written as a finite linear combination of monomials, then we’ve
completed the first step. Taking a hint from the And function in example 1.3, we can write

n

14+ a;x;
lo—a(z) = H#
i=1

Indeed, if a; # x;, then a;x; = —1 and the product is 0. If a; = x; for all ¢ , then a;x; = 1 for all ¢
and the product is 1. Therefore

fw= Y @[T =Y ot
S

ac{-1,1}n i=1 Cin]

for some Cg € R. This last equality is valid since any term of the sum involves only monomials in
x;; therefore we may group terms with common monomial terms [, g z;.

For uniqueness, we will show that 2° are orthonormal with respect to an inner product. Clearly
the size of {z°} sC[n] 18 2", so orthogonality will imply its a basis. We’ll use the inner product

1

(fo)=5: Y. f@)e(@) =E[f(X)g(X)]
ze{-1,1}"

where X is a uniform random variable over the hypercube (check: the inner product axioms).
Choosing f(x) = ¥ and g(x) = z” for two subsets S, T C [n] , we have

1
E[XSXT]zz—n P
ze{-1,1}"

We can put z%27 into the form 2 where U C [n] is a related subset,

s [l = 1 =

€S jeT 1€SUT\(SNT)
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To check the last equality, if ¢ € S NT, then z; appears twice in the product and xf =1, so the
components in the intersection S N1 can be excluded from the product. So,

1
EX°XT] = o y oAb
ze{-1,1}"
Suppose first that U # (). Then we can find some k& € U, and
DRI DRI IR
ze{—1,1}" TirEp=1 y:yp=1

The last equality follows by 1. 2V = —yY where y is equal to « but with the k" bit flipped, and
2. bit flipping is a bijection so the sizes of the sums are the same.

If instead U = (), then the above reduces to 1. Altogether this means z° and z” are orthogonal,
and {z°} sC[n] is a basis for the Boolean functions, so any representation

flz) = Z Cgz®
S

is unique. ]

Definition 1.8. The coefficients C's appearing in the unique polynomial p(z) are the Fourier coef-

ficients of f,

~

f(8)=0Cs,

In this notation, the theorem reads: for any Boolean function f: {—1,1}" — R,

flx) =Y f(8)z*
SCln]
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