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1 Lower bound on randomness for k-wise independence

Let D be any k-wise independent distribution on {0, 1}n. Define D(x) = Pr[D = x] and

sup(D) = {x ∈ {0, 1}n : D(x) > 0}

We claim that |sup(D)| ≥ nk/2. In particular, this means that we need ≥ 1
2k log n random bits to

generate D. Compare this to our construction!

Proof. For brevity, let S = sup(D). View the distribution as a real valued function D : S → R+.
Let

V = {f : S → R}

be the vector space of functions from S to R. Clearly dim(V ) = |S|, since the collection of indicator
functions {ey}y∈S given by

ey(x) :=

{
1 if x = y

0 else

is a basis for V .
Define an inner product ⟨·, ·⟩ : V × V → R by

⟨f, g⟩ := Ex∼D[f(x) · g(x)] =
∑
x∈S

D(x)f(x)g(x).

We can easily verify that it is an inner product; for any α, β ∈ R and f1, f2, g ∈ V , we have

⟨αf1 + βf2, g⟩ =
∑
x∈S

D(x) (αf1 + βf2) g(x)

= α
∑
x∈S

D(x)f1(x)g(x) + β
∑
x∈S

D(x)f2(x)g(x) = α⟨f1, g⟩+ β⟨f2, g⟩,

and similarly for the second coordinate. It is also clear that

⟨f, f⟩ =
∑
x∈S

D(x)f(x)2 ≥ 0

since D(x) ≥ 0, with equality if and only if f(x) = 0 for all x ∈ sup(D) (i.e. if f = 0).
Next we define a collection of |S| orthogonal functions in V with respect to the inner product. For
all subsets T ⊆ [n] with |T | ≤ k/2, define χT : S → R by

χT (x) :=
∏
i∈T

(−1)xi
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recalling that x = (x1, x2, · · · , xn) ∈ {0, 1}n is an n-tuple. We claim that the collection {χT :
T ⊆ [n], |T | ≤ k/2} is orthogonal. To see this, select distinct T1, T2 ⊆ [n] with |T1| , |T2| ≤ k/2.
Expanding the definition of the inner product gives

⟨χT1 , χT2⟩ = Ex∼D[χT1(x)χT2(x)] = Ex∼D

∏
i∈T1

(−1)xi
∏
j∈T2

(−1)xj

 .

Observe that the terms with i ∈ T1 ∩ T2 will cancel each other out; in particular, we have

Ex∼D

∏
i∈T1

(−1)xi
∏
j∈T2

(−1)xj

 = Ex∼D

 ∏
i∈T1∆T2

(−1)xi

 .

Now note that |T1∆T2| ≤ |T1|+ |T2| ≤ k
2 + k

2 = k. Since D is k-wise independent, we have

Ex∼D

 ∏
i∈T1∆T2

(−1)xi

 =

 ∏
i∈T1∆T2

Exi∼Di(−1)xi

 = 0

as Di, the marginal distribution of D on the i-th component, is uniform on {0, 1}.
Since the collection {χT } is orthogonal, its cardinality provides a lower bound on the dimension of
V . In particular,

|S| = dim(V ) ≥
(

n

k/2

)
≥ nk/2.

Remark 1.1. In fact, there are explicit constructions which show that this bound is tight.

2 Pseudorandom Generators

The motivating idea behind pseudorandom generators is to provide a derandomization black-box
for algorithm design.

Definition 2.1. A family of pseudorandom generators (PRG) is given by the collection

{Gn : {0, 1}s(n) → {0, 1}n}n∈N.

Definition 2.2. A family (class) of Boolean functions is

F =
⋃
n≥0

Fn, Fn ⊆ {f : {0, 1}n → {0, 1}}.

Definition 2.3. For ε = ε(n), we say that {Gn} is an ε-PRG for the Boolean family {Fn} with
seed length s(n) if for all n ≥ 0 and f ∈ Fn,∣∣E[f(Un)]− E

[
f(Gn(Us(n)))

]∣∣ < ε(n).
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Computing PRGs

We say that A is mildly explicit if A runs in poly(n, 2s(n)). (This is sufficient for our purposes,
since our derandomization technique is to run G on all 2s(n) inputs.)
We say that A is strongly (or fully) explicit if A runs in poly(n, S(n)). (This one is necessary for
cryptographic purposes.)

Example 2.4. (k-Juntos) For fixed n ≥ 1, and consider the collection of functions Fn ⊆ {f :
{0, 1}n → {0, 1}} which depends on at most k input bits. Denote this family by F k-Junta. We claim
that k-wise independence fools F k-Junta.
Indeed, if f ∈ Fn for some n ≥ 1,we have

E[f(Un)] = E[f(Gn(Us(n)))]

since f ignores all but k bits (by its membership in Fn).
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