
CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 13: October 4, 2022

Lecturer: Eshan Chattopadhyay Scribe: Tomas Alvarez

1 Introduction

Recall the following claim from the previous lecture:

Claim 1.1. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard. Then G : {0, 1}n → {0, 1}n+1 defined as
G(x) = x ◦ f(x) is an (S′, ε′) pseudorandom generator (PRG) with S′ = S − 1 and ε′ = ε.

This shows that the assumption of a hard function f allows us to extend n bits to n + 1 bits.
The following idea from Nisan and Wigderson will show the construction of a much better PRG
based on the same hardness assumption.

2 Nisan-Wigderson

Claim 2.1. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard. Then there is an (S′, ε′) PRG, G : {0, 1}r →
{0, 1}m where S′ = S −O(m2k) and ε′ = mε.

Before we prove this claim we will need to define (n, k) designs which are an essential component
of these PRG’s. It will be the case that if we can pick better designs then we will get better PRG’s.

Definition 2.2. An (n, k) design is a set system S1, S2, · · ·Sm ⊆ [r] such that |Si| = n and ∀i, j
where i 6= j we have |Si ∩ Sj | ≤ k (small intersection) and the size of such a design is m.

The amount of sets m, and intersection size k will depend on the choice n. Also, since the size
of the sets is at least n we must have r ≥ n. With this definition we can now provide a construction
of the PRG’s claimed in 2.1.

Claim 2.3. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard. Let x ∈ {0, 1}r (a seed). For any W ⊆ [r]
let x|W denote the projection of x onto coordinates W . Let z ∈ {0, 1}m be G(x) where zi = f(x|Si)
and S1, · · · , Sm form an (n, k) design. That is to say G(x) = z = f(x|S1) ◦ f(x|S2) ◦ · · · ◦ f(x|Sm),
the concatenation of f evaluated at x projected onto each of the sets Si. Then G is an (S′, ε′) PRG
with parameters described in Claim 2.1.

Essentially we are using many evaluations of the hard function f to construct a PRG. The
runtime of G will then be m · T (n) where T (n) is the runtime of f (f ∈ DTIME(T (n))) plus the
construction of an (n, k) design. For a dream PRG we would want m to be exponential in r and
r polynomial in n. Is it reasonable to assume such sets exist? (We shall see a construction in the
next class)

We now prove by way of contradiction that G is an (S′, ε′) PRG.

Proof. Suppose G is not an (S′, ε′) PRG. We will use the hybrid argument to show this is a
contradiction. Consider the following sequence of hybrid distributions:

H0 = f(x|S1) ◦ f(x|S2) ◦ · · · ◦ f(x|Sm)

1

Lecture 13: October 4, 2022 2

H1 = b1 ◦ f(x|S2) ◦ · · · ◦ f(x|Sm)

H2 = b1 ◦ b2 ◦ · · · ◦ f(x|Sm)

Hi = b1 ◦ b2 ◦ · · · ◦ bi ◦ f(x|Si+1) ◦ · · · ◦ f(x|Sm)

...

Hm = b1 ◦ b2 ◦ · · · ◦ bm
where x ∼ Ur and b1, b2, · · · bm ∼ U1. For any i the distribution replaces the first i function

values with uniform random bits. The hybrids go from from H0 which is just the distribution
of G(x) until Hm which is the uniform distribution on m random bits. Due to our assumption
that G is not an (S′, ε′) PRG, there must exist some distinguisher D that distinguishes between
the output of G and the uniform distribution. Rephrasing this in terms of the hybrids, we have
|Pr[D(Hm) = 1] − Pr[D(H0) = 1]| ≥ ε′. We can manipulate this probability into the following
telescoping sum

|Pr[D(Hm) = 1]− Pr[D(H0) = 1]| =

∣∣∣∣∣
m−1∑
i=0

Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1]

∣∣∣∣∣
By the triangle inequality we have∣∣∣∣∣

m−1∑
i=0

Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1]

∣∣∣∣∣ ≤
m−1∑
i=0

|Pr[D(Hi+1) = 1]− Pr[D(Hi) = 1]|

and thus ε′ ≤
∑m−1

i=0 |Pr[D(Hi+1) = 1]−Pr[D(Hi) = 1]|. Notice that it cannot be the case that all

m terms in the summation are less than ε′

m or they would not sum to at least ε′. Therefore, there

must be some i for which |Pr[D(Hi+1) = 1] − Pr[D(Hi) = 1]| ≥ ε′

m . Therefore, by assuming that
there was a distinguisher for H0 and Hm with ε′, we necessarily have a distinguisher between at
least one Hi and Hi+1 with ε′

m .
We will now consider a randomized algorithm A (which can eventually into a circuit). We will

show that under conditions on ε′

m , we can construct an ε distinguisher from A which will contradict
the fact that f is (S, ε)-hard.

Algorithm 1

Require: x, b′

z ← 0r (an r-length string of 0’s)
j ← 1
for j ≤ r do

if j ∈ Si+1 then zj = xj
else zj ∼ U1

end if
end for
Sample b1, b2, · · · , bi ∼ U1

Output D(b1 ◦ b2 ◦ · · · ◦ bi ◦ b′ ◦ f(z|Si+2) ◦ f(z|Si+3) ◦ · · · , f(z|Sm))

For this algorithm A, we are given a seed x and a bit b′ and A has knowledge of both i (the
value for which |Pr[D(Hi+1) = 1] − Pr[D(Hi) = 1]| ≥ ε′

m) and an (n, k) design. Importantly this
bit b′ is either chosen uniformly at random or b′ = f(x). If b′ is a random bit then over all choices

Lecture 13: October 4, 2022 3

of random bits and values of x we see that b1 ◦ b2 ◦ · · · ◦ bi ◦ b′ ◦ f(z|Si+2) ◦ f(z|Si+3) ◦ · · · , f(z|Sm)
is the distribution Hi+1. Similarly, over all choices of random bits and values of x, we see that if
b′ = f(x) then the distribution is Hi. Since D is an ε′

m distinguisher this means that

Pr
b1,··· ,bi,z|Si+1

Pr
x

[A(x, f(x)) = 1]− Pr
b1,··· ,bi,z|Si+1

Pr
x

[A(x, b′) = 1] ≥ ε′

m

Where z|Si+1
is the set of uniformly sampled bits (the indices which are not in Si+1). Using

similar reasoning to the previous result with sums, we know that if the total probability of this
is greater than ε′

m , then there must exist some values b1, · · · , bi, ZS̄i
, for which Pr

x
[A(x, f(x)) =

1] − Pr
x

[A(x, b′) = 1] ≥ ε′

m . Therefore, this algorithm constructs an ε′

m distinguisher for f and if

we set ε ≥ ε′

m then this an ε distinguisher. It remains to find S which is the size of a circuit made
by derandomizing algorithm A. Notice that the we must calculate D during the algorithm which
means we need a circuit of size S′. We also need r − n random bits as inputs to fully construct z
and depending on i we might need at most another m bits for b1, b2, · · · . Knowledge of i can also
be counted to take log(m) bits. Finally, we make at most m function calls to f so this adds size
m · c(f) size to the circuit where c(f) is the circuit size needed to compute f . However, by the
property of the (n, k) design, each set Sj has an intersection of size at most k with Si+1. Therefore,
computing f(z|Sj) depends only on at most k bits. Therefore, we can include a lookup table in our

circuit for these calculations which has size 2k. Thus the total size of the circuit is S′+O(m2k). If
we let S′+O(m2k) < S then we have constructed a size less than S circuit which ε approximates f .
This contradicts the hardness assumption on f . Hence, G must be an (S −O(m2k),mε) PRG.

We also include the following lemma which relates PRG’s to hard languages.

Lemma 2.4. Suppose L ⊂ {0, 1}∗ is in DTIME(T (n)) and is (S, ε)-hard. Then there exists a
PRG {Gn}n≥1 where Gn : {0, 1}r(n) → {0, 1}m(n) that is (S −O(m(n) · 2k(n)),m(n) · ε) hard.

	Introduction
	Nisan-Wigderson

