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Final project guidelines



What is good in an Abstract

• Should be like an abstract for a paper
• Something that could (but doesn’t need to) be the abstract for your final report.

• Typical length: about 6–8 sentences
• Can be longer or shorter
• But it’s an advertisement/summary for your paper, not the paper itself

• Should fairly summarize your results, but does not have to be complete
• E.g. you can say something like “Our method improves throughput by X% over 

an existing method” if  you haven’t run the experiment yet.



Things to cover in an abstract

• Setting/Motivation
• What is the setting of  the paper? Why should we care about it?

• Problem Statement/Scope
• Within this setting, what problem did you set out to solve in the paper?

• Approach/Methodology
• What did you do to solve the problem? What techniques did you develop?

• Results
• What did you observe? How did your techniques perform?

• Conclusion:
• What should we take away from your results? Why should we care about them?



An Example: HOGWILD!

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Setting/Motivation

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Problem Statement/Scope

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Approach/Methodology

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Results

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Conclusion/Takeaway

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve 
state-of-the-art performance on a variety of  machine learning tasks. 
Several researchers have recently proposed schemes to parallelize SGD, but 
all require performance-destroying memory locking and synchronization. 
This work aims to show using novel theoretical analysis, algorithms, and 
implementation that SGD can be implemented without any locking. We 
present an update scheme called HOGWILD! which allows processors 
access to shared memory with the possibility of  overwriting each other’s 
work. We show that when the associated optimization problem is sparse, 
meaning most gradient updates only modify small parts of  the decision 
variable, then HOGWILD! achieves a nearly optimal rate of  convergence. 
We demonstrate experimentally that HOGWILD! outperforms alternative 
schemes that use locking by an order of  magnitude.



Another Example: Deep Compression

Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy. 
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Setting/Motivation
Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy. 
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Problem Statement/Scope
Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy. 
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Approach/Methodology
Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy. 
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Results
Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy.
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Conclusion/Takeaway
Neural networks are both computationally intensive and memory intensive, making 
them difficult to deploy on embedded systems with limited hardware resources. To 
address this limitation, we introduce “deep compression”, a three stage pipeline: 
pruning, trained quantization and Huffman coding, that work together to reduce the 
storage requirement of  neural networks by 35× to 49× without affecting their accuracy. 
Our method first prunes the network by learning only the important connections. 
Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman 
coding. After the first two steps we retrain the network to fine tune the remaining 
connections and the quantized centroids. Pruning, reduces the number of  connections 
by 9× to 13×; Quantization then reduces the number of  bits that represent each 
connection from 32 to 5. On the ImageNet dataset, our method reduced the storage 
required by AlexNet by 35×, from 240MB to 6.9MB, without loss of  accuracy. Our 
method reduced the size of  VGG-16 by 49× from 552MB to 11.3MB, again with no 
loss of  accuracy. This allows fitting the model into on-chip SRAM cache rather than 
off-chip DRAM memory. Our compression method also facilitates the use of  complex 
neural networks in mobile applications where application size and download bandwidth 
are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network 
has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.



Abstract Presentation — Wednesday

• Goal: to learn how to write a great abstract
• Secondary goal: to see what other students’ projects are

• Submit your abstracts by 5:00 PM
• So that I can print them out and put them into a slide deck before class

• We will have an in-class feedback activity
• Like the project idea discussion activity
• Will overflow into Monday, then I’ll finish up with talking a bit about my own 

research if  there’s leftover time



Questions?



Project Report Expectations



Formatting

• Report should be at least four pages, not including references
• Submit either a link to code or code as an appendix or attachment

• Report should use ICML 2019 style or a similar style
• This is mostly to be fair about length

• Report should be structured appropriately
• For example: abstract, introduction, related work, main results, experiments
• Correctly formatted references page



Content — Overview

• You should have implemented a machine learning system
• This entails writing some code
• You should have some code to submit along with the report

• Either as a supplemental file, or as a link to a repository

• You should have used a technique we discussed in the course
• And it should be clear from the report which one you used

• You should have run empirical evaluations of  your method
• Systems metric: e.g. throughput, wall-clock time, memory usage
• Statistical metric: e.g. accuracy, F1 score

• Your work should correspond to the proposal



Content — Conceptual

• The report should summarize the problem you are trying to solve
• Explain why your approach is a good idea or interesting to study
• Thesis statement clearly and concisely states the purpose of  the report

• The report should fairly acknowledge previous work
• And relate it to what you did

• The report should be clear and well-written
• Avoid grammar/spelling/punctuation issues that make the text difficult to read.

• The report should demonstrate knowledge/understanding of  the chosen 
technique beyond what we discussed in class



Content — Technical

• The main section of  the report should explain what you did
• And why you did it!

• Someone should be able to reproduce your results from the report

• The paper should be technically sound
• Any claims should be supported by theoretical analysis or experimental results

• Evaluate both the strengths and weaknesses of  the work



Content — Experimental

• The experiments should involve a fair comparison
• In terms of  systems & statistical performance, among two or more methods
• Will need more than the bare minimum described in the proposal

• The report should explain the experimental results
• Why did this happen? Was it what you expected? What does this tell us?

• The results should be properly formatted
• At least one figure with a title and properly labeled axes
• Present things graphically whenever possible



Content — Impact

• The report should discuss the impact of  the results
• What does this tell us about how we should design systems in the future?

• The report should gesture at possibilities for future work



Questions?


