Low Precision Arithmetic

CS6787 Lecture 10 — Fall 2021

Memory as a Bottleneck

* So far, we've just been talking about compute

* e.g.techniques to decrease the amount of compute by decreasing
iterations

« But machine learning systems need to process huge
amounts of data

* Need to store, update, and transmit this data

* As a result: memory is of critical importance
 Many applications are memory-bound

Memory: The Simplitied Picture

Compute

RAM

Memory: The Multicore Picture

Compute H

cache

Compute L1 L2
b cache cache
Compute L1 L2
b cache cache

L1 ,I L2

L3

cache

Compute L1 cache L2 cache

Compute L1 cache L2 cache

Compute L1 cache L2 cache

Compute L1 cache L2 cache

Compute L1 cache L2 cache

L1 cache L2 cache

Memory: The Distributed Picture

LHLHH |-

Network

What can we learn from these pictures?

« Many more memory boxes than compute boxes
« And even more as we zoom out

« Memory has a hierarchical structure

« Locality matters

« Some memory is closer and easier to access than others
» Also have standard concerns for CPU cache locality

What limits us?

 Memory capacity
« How much data can we store locally in RAM and/or in cache?

« Memory bandwidth

* How much data can we load from some source in a fixed
amount of time?

« Memory locality
 Roughly, how often is the data that we need stored nearby?

- Power
« How much energy is required to operate all of this memory?

One way to help:

[Low-Precision Arithmetic

[Low-Precision Arithmetic

« Traditional ML systems use 32-bit or 64-bit floating
point numbers

 But do we actually need this much precision?

» Especially when we have inputs that come from noisy
Mmeasurements

 |dea: instead use 8-bit or 16-bit numbers to compute
« Can be either floating point or fixed point
« On an FPGA or ASIC can use arbitrary bit-widths

L.ow Precision and Memory

* Major benefit of low-precision: uses less memory bandwidth

Precision in DRAM Memory Throughput

64-bit float vector
S numbers/ns

32-bit float vector

. 10 numbers/ns

16-bit int vector

IIIIIIIIIIII 20 numbers/ns

40 numbers/ns

(assuming ~40 GB/sec memory bandwidth)

L.ow Precision and Memory

* Major benefit of low-precision: takes up less space

Precision in DRAM Cache Capacity

64-bit float vector

4 M numbers

32-bit float vector

e [][] [] [2] - 8 M numbers

16-bit int vector

- DONDNNRARNN - 16 M number

32 M numbers

(assuming ~32 MB cache)

[Low Precision and Parallelism

* Another benefit of low-precision: use SIMD instructions to get more
parallelism on CPU

SIMD Precision SIMD Parallelism

64-Dbit float vector 4 lt 1 / 1
El E1 1 B3 e s b

32-bit float vector 3 lt 1 / 1
EEEEEEER . i)

16 multiplies/cycle
. (vpmaddwd instruction)
$-bitint vector 32 multiplies/cycle
i

L.ow Precision and Power

* Low-precision computation can even have a super-linear effect on energy

intlé6
&= 0=

-
mul

float32
multiplier

* Memory energy can also have quadratic dependence on precision

—
nemor N
rnemory

Ettects of Low-Precision Computation

* Pros

* Fit more numbers (and therefore more training examples) in
memory

. Storhe more humbers (and therefore larger models) in the
cache

 Transmit more numbers per second
« Compute faster by extracting more parallelism
* Use less energy

 Cons
* Limits the numbers we can represent

* Introduces quantization error when we store a full-precision
numlber in a low-precision representation

Numeric Formats in
Machine Learning

How do we represent numbers as bit patterns on a computer?

A representative setup: DNN training

Many of the large—scale learning tasks we want to accelerate are deep learning tasks.

A deep neural network (DNN) looks like this:

RelU
layer
01 = ReLU(él)

softmax
layer
02 = softmax(az)

input — fully connected
example —— linear layer
zinR* — a1 = Wiz +b

fully connected
linear layer
az = Wao1 + b

batch norm
dz = BN((ZQ)

batch norm
d1 = BN(al)

output
7 in R

LILLLLLLLL

LILLLLLLLL

LILLLLLLLL

L

L

L

Many layers connected to each other in series.

To train, we compute the loss gradient - — wy — o,V f (w .)
and run stochastic gradient descent: t+1 t t ty Lt

All of the signals

A representative setup: DNN training here are vectors of

real numbers.

* Standard method of computing gradient for SGD uses backp But how are they

* Computationally, it looks like this on the level of a single layer stored on a
o computer?
activationspyey activations
| Weights .
f storage
Weight
accumulator

backward

| | Weight gradient |_ |

backward et

The standard approach
Single-precision tloating point (FP32)

* 32-bit floating point numbers

31(30(29|28|27|26(25|24(2322(21|20(19|18|17|16|15|14|13|12(11|10(9 |8 | 7|6 |5 |4 |3 |2 1|0

sign 8-bit exponent 23-bit mantissa

* Usually, the represented value is

represented number = (—1)51&" . gexponent—I27 1 g bo1bag . . . bo

. . . 8
* Has a machine epsilon (measures relative error) of €machine =~ 6.0 X 10

An example

» Let's convert the number 6.5 to floating point.
65=13x2"1=(8+4+1)x 27"
= 1101, x 27" = 1.101; x 27
— 1.101, x 2(1297127)
— 1.101, x 5(10000001; —127)

1 10000001 10100000000000000000000

. . . Or, confusingly,
What is the machine epsilon? owice his,

* Represents the relative error of the floating-point format 7

* One half the distance between 1 and the next-largest floating point number

~ 2—m—1

 If there are m mantissa bits, Emachine
* Because the smallest representable number>1is 1+27™

Relative error bound. If x € R is any number in range of the format, and z is
the nearest number representable in the format, then

’i — SU‘ < Emachine ° ’m’

Similarly, if z,y € R are two floating-point numbers, x is any primitive numerical
operation (e.g. +, X, etc.), and ® is the floating-point “version” of that op, then

(2 ®y) — (r*y)| < Emachine * |T * Y.

A low-precision alternative

FP16/Halt-precision floating point

* 16-bit floating point numbers

1-bit 5-bit 10-bit
sign exponent significand

* Usually, the represented value is

T = (_1)81gn bit 2exponent—15 . 1.signiﬁcand2

Numeric properties of 16-bit tloats

* A larger machine epsilon (larger rounding errors) of €machine = 4.9 X 104
* Compare 32-bit floats which had ep5chine =~ 6.0 X 1078

* A smaller overflow threshold (easier to overflow) at about 6.5 x 10%
* Compare 32-bit floats where it’s 3.4 x 10°°

* A larger underflow threshold (easier to underflow) at about 6.0 x 107%.
* Compare 32-bit floats where it’s 1.4 x 107 4°

With all these drawbacks, does anyone use this?

Halt-precision floating point support

* Supported on most modern machine-learning-targeted GPUs
* E.g. efficient implementation as far back as NVIDIA Pascal GPUs

Pascal Hardware Numerical Throughput

T
GP100 (Tesla P100 NVLink) NA NA

GP102 (Tesla P40) 439 3.3

GP104 (Tesla P4) 21.8 10.9

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-
add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating

peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per
Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

* Good empirical results for deep learning

Micikevicius et al. “Mixed Precision Training.” on arxiv, 2017.

Another common option
Bfloat16 — “brain floating point”

* Another 16-bit tloating point number

1-bit 8-bit 7-bit
sign exponent significand

Emachine = 3.9 x 1073

* Main benefit: numeric range is now the same as single-precision float
* Since it looks like a truncated 32-bit float

e This is useful because ML applications are more tolerant to quantization error
than they are to overflow

An alternative to low-precision ﬂoating point
Fixed point numbers

* p + q+ 1 -bit fixed point number

1-bit p-bit q-bit

sign integer part fractional part

* The represented number is

r = (—1)%en b (integer part + 277 . fractional part)

= 279 . whole thing as signed integer

Arithmetic on tixed point numbers

« Simple and efficient

« Can just use preexisting integer processing units

. L?\k/)\(ter power than floating point operations with the same number
of bits

* Mostly exact

« Can always convert to a higher-precision representation to avoid
overflow

. %an represent a much narrower range of numbers than
oat

 Has an absolute error bound, not relative error bound

Support for fixed-point arithmetic

« Anywhere integer arithmetic is supported
« CPUs, GPUs

« Although not all GPUs support 8-bit integer arithmetic

« And AV X2 does not have all the 8-bit arithmetic instructions
we'd like

« Particularly effective on FPGAs and ASICs
« Where floating point units are costly

« Sadly, very little support for other precisions
 4-bit operations would be particularly useful

A powertul hybrid approach
Block Floating Point

* Motivation: when storing a vector of numbers, often these numbers all lie
in the same range.

* So they will have the same or similar exponent, if stored as floating point.

* Block floating point shares a single exponent among multiple numbers.

8-bit shared l lllllll
exponent
IRENEREN

A more specialized approach
Custom Quantization Points

« Even more generally, we can just have a list of 2P numbers
and say that these are the numbers a particular low-
precision string represents

 We can think of the bit string as indexing a number in a dictionary

« Glves us total freedom as to range and scaling
« But computation can be tricky

« Some research into using this with hardware support

* "The ZipML Framework for Training Models with End-to-End Low
Precision: The Cans, the Cannots, and a Little Bit of Deep Learning”
(Zhang et al 2017)

Low-precision formats in general

* These are some of the most common formats used in ML
 ..but we're not limited to using only these formats!

« There are many other things we could try

» For example, floating point numbers with different
exponent/mantissa sizes

* Fixed point numbers with nonstandard widths

* Problem: there's no hardware support for these other
things yet, so it's hard to get a sense of how they would
perform.

« Need to simulate

Other Numerical Formats Used Rarely

- BigFloats
« Higher-precision floating-point numbers that are implemented in
software

- Are sometimes necessary when you need very high precision, such
as for very poorly conditioned problems

 Exact arithmetic with rational numbers

« Lets you do arithmetic with no error

- Numbers have variable length, because they require arbitrarily large
integers

« Can also support countable field extensions of the rational
numbers

 But these are very rarely used because of performance implications

Low-Precision SGD

Using low-precision arithmetic for training

P
<

How is precision used for training

e Recall our training diagram

* Each of these signals forms a class of numbers

* Generally, we assign a precision to each of the classes,
and different classes can have different precisions

activationspey

backward

\ 4

Weights

activations

t

Weight
accumulator

a

stor age

Weight
gradient

backward et

Number classes extended from
“Understanding and Optimizing
Asynchronous Low-Precision Stochastic

Gradient Descent,” ISCA 2017:

e Dataset numbers

* Model/weight numbers

e Gradient numbers

e Communication
numbers

e Activation numbers

* Backward pass numbers

* Weight accumulator

* Linear layer accumulator

Quantize classes independently

» Using low-precision for different number classes has
different effects on throughput.

- Quantizing the dataset numbers improves memory capacity
and overall training example throughput

 Quantizing the model numbers improves cache capacity and
saves on compute

« Quantizing the gradient numbers saves compute

« Quantizing the communication numbers saves on expensive
inter-worker memory bandwidth

Quantize classes independently

* Using low-precision for different number classes has
different effects on statistical efficiency and accuracy.

 Quantizing the dataset numbers means you're solving a different
problem

« Quantizing the model numbers adds noise to each gradient step,
and often means you can't exactly represent the solution

. Qtuantizing the gradient numbers can add errors to each gradient
step

. Quantizin%the, communication humbers can add errors which
cause workers' local models to diverge, which slows down
convergence

Theoretical Guarantees for LLow Precision

Using this, we can prove
guarantees that SGD
converges with a low
precision model.

. Reducing precision adds noise in the form

* T'wo approaches to rounding:
* biased rounding — round to nearest number
* unbiased rounding - round randomly: E[Q(x)] = x

30% 70%

o Uy

2.0 2.7 3.0

Why unbiased rounding?

* Imagine running SGD with a low-precision model with update rule

Wi4+1 = Q (wt — othf(wt; Lt, yt))

* Here, Q is an unbiased quantization function

* In expectation, this is just gradient descent

~

Elw1|w] = E [Q (wg — ¢V f(wy; oy, yt))’wt}

=2 [wt — atvf(wt; Lt , yt)‘wt]
= wy — oV f(wy)

Implementing unbiased rounding

 To Implement an unbiased to-integer quantizer:
sample u ~ Unif|0,1]|, then set Q(x) = |z + u|

« Why Is this unbiased?

E[Q(z)] = |z] - P(Q(z) = |z]) + ([z] +1) - P(Q(z) = [z] + 1)
= |z|+PQ(x)=|z|+1)=|z| + P(lz+u| = |x] +1)
=lz|]+Plax+u>|z|+1)=|z|+Plu>|z|+1—2x)
=lz|+1+(|z]+1—2)==x

Doing unbiased rounding etficiently
* We still need an efficient way to do unbiased rounding

 Pseudorandom number generation can be expensive

 E.G. doing C++ rand or using Mersenne twister takes many
clock cycles

 Empirically, we can use very cheap pseudorandom
numiber generators
« And still get good statistical results

* For example, we can use XORSHIFT which is just a cyclic
permutation

Benetits of Low-Precision Computation

300
250

200

GOPS / watt
a

100

50

M2090 K40 Kepler P40 Pascal P40 Pascal P40 Pascal
Fermi (fp32) (fp32) Maxwell (fp32) (int8) (int8 + clock

(fp32) capping)

From https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

Drawbacks of low-precision

- The draw back of low-precision arithmetic is the low
precision!

* Low-precision computation means we accumulate more
rounding error in our computations

* These rounding errors can add up throughout the learning
process, resulting in less accurate learned systems

» The trade-off of low-precision: throughput/memory vs.
accuracy

Example: Low-Precision Neural Net

Test Error for Low Precision LeNet (D8M¥)

MNIST —o—

60 CIFAR10 —®— A
-had
Performance o
eventually /ié/
breaks down S 30

as precision is 9

lowered g 20
10

2 4 6 8 10 12 14 16
model precision x

(b) Test accuracies of low-precision SGD on
LeNet neural network after 5000 passes, for
various datasets.

Demo

Memory Locality and Scan Order

Memory Locality: Two Kinds

« Memory locality is needed for good cache performance

« Temporal locality
* Frequency of reuse of the same data within a short time window

« Spatial locality
* Frequency of use of data nearby data that has recently been used

 Where is there locality in stochastic gradient descent?

Problem: no dataset locality across iterations

* The training example at each iteration is chosen
randomly

« Called a random scan order
* Impossible for the cache to predict what data will be needed

Wt41 =— W — Oétvf(’wt; Lt yt)

» |dea: process examples in the order in which they are
stored in memory
« Called a systematic scan order or sequential scan order
« Does this improve the memory locality?

Random scan order vs. sequential scan order

* Much easier to prove theoretical results for random
scan

« But sequential scan has better systems performance

 In practice, almost everyone uses sequential scan

* There's no empirical evidence that it's statistically worse in
Most cases

« Even though we can construct cases where using sequential
scan does harm the convergence rate

Other scan orders

* Shuffle-once, then segquential scan

« Shuffle the data once, then systematically scan for the rest of
execution

« Statistically very similar to random scan at the state

 Random reshuffling
« Randomly shuffle on every pass through the data

« Gets better upper bounds for SGD
« e.g.for convex, gets O(1/t) versus O(1/sgrt(t))

* Very commonly used with deep learning

Demo

Questions?

 Upcoming things
» Project feedback coming soon!

