
Machine Learning Theory (CS 6783)

Lecture 6 : Symmetrization, Rademacher Complexity and Infinite classes

1 Recap

Last class we showed that

ES [LD(ŷERM)]− inf
f∈F

LD(f) ≤ sup
D

ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

This was using the Empirical Risk Minimizer (ERM)

1. When |F| <∞, using the above we showed that

ES [LD(ŷERM)]− inf
f∈F

LD(f) ≤
√

log |F|
n

2 Symmetrization and Rademacher Complexity

ES [LD(ŷERM)]− inf
f∈F

LD(f)

≤ ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

≤ ES,S′
[

sup
f∈F

{
1

n

n∑
t=1

`(f(x′t), y
′
t)−

1

n

n∑
t=1

`(f(xt), yt)

}]

= ES,S′Eε

[
sup
f∈F

{
1

n

n∑
t=1

εt(`(f(x′t), y
′
t)− `(f(xt), yt))

}]

≤ 2 ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
=: Rn(` ◦ F)

Where in the above each εt is a Rademacher random variable that is +1 with probability 1/2 and
−1 with probability 1/2. The above is called Rademacher complexity of the loss class ` ◦ F . In
general Rademacher complexity of a function class measures how well the function class correlates
with random signs. The more it can correlate with random signs the more complex the class is.
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3 Why Does Symmetrization Help?

The main idea is that once we have introduced the Rademacher variables ε1, . . . , εn, we can look
at the Rademacher complexity conditioned on sample S. Specifically, given a sample S, define

F|x1,...,xn = {(f(x1), . . . , f(xn)) : f ∈ F}

and define
G|(x1,y1),...,(xn,yn) = {(`(f(x1), y1), . . . , `(f(xn), yn)) : f ∈ F}

Now note that:

ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
= ESEε

[
sup

f∈F|x1,...,xn

1

n

n∑
t=1

εt`(f [t], yt)

]

= ESEε

[
sup

g∈G|(x1,y1),...,(xn,yn)

1

n

n∑
t=1

εtg[t]

]

Thus we see that we need to bound Eε
[
supf∈F|x1,...,xn

1
n

∑n
t=1 εt`(f [t], yt)

]
or equivaently Eε

[
supg∈G|(x1,y1),...,(xn,yn)

1
n

∑n
t=1 εtg[t]

]
. Since the term instead the supremum is still

a zero mean average, it is clear that only the cardinality of set F|x1,...,xn matters and not cardinality
of all of F . Why does this help?

Think about the threshold example, given n examples, the cardinality restricted to these sam-
ples is at most n+ 1. Why?
Well sort any given n points in ascending order, using thresholds, we can get at most n + 1 possible
labeling on the n points. Hence for any x1, . . . , xn, |F|x1,...,xn | ≤ n+ 1

If we use the intuition that max over a finite set (of cardinality say M) of average over n
zero mean bounded variables is at most O(

√
logM/n), then we see that this implies a rate of

O(
√

log(n+ 1)/n for learning thresholds. To make the argument concrete, we below reprove the
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lemma for expected supremum over Rademacher averages over finite sets precisely. From the lemma
we prove next we immediately conclude that more generally:

ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
≤ O

ES

√ log
∣∣F|x1,...,xn∣∣
n


4 Massart’s Finite Lemma

Lemma 1. For any set V ⊂ Rn :

1

n
Eε

[
sup
v∈V

n∑
t=1

εtv[t]

]
≤ 1

n

√√√√2

(
sup
v∈V

n∑
t=1

v2[t]

)
log |V |

Proof.

sup
v∈V

n∑
t=1

εtv[t] =
1

λ
log

(
sup
v∈V

exp

(
λ

n∑
t=1

εtv[t]

))

≤ 1

λ
log

(∑
v∈V

exp

(
λ

n∑
t=1

εtv[t]

))

=
1

λ
log

(∑
v∈V

n∏
t=1

exp (λεtv[t])

)

Taking expectation w.r.t. Rademacher random variables,

Eε

[
sup
v∈V

n∑
t=1

εtv[t]

]
≤ 1

λ
Eε

[
log

(∑
v∈V

n∏
t=1

exp (λεtv[t])

)]

Since log is a concave function, by Jensen’s inequality, Expected log is upper bounded by log of
expectation and so:

≤ 1

λ
log

(
Eε

[∑
v∈V

n∏
t=1

exp (λεtv[t])

])

=
1

λ
log

(∑
v∈V

n∏
t=1

Eεt [exp (λεtv[t])]

)

=
1

λ
log

(∑
v∈V

n∏
t=1

eλv[t] + e−λv[t]

2

)
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For any x, ex+e−x

2 ≤ ex2/2

≤ 1

λ
log

(∑
v∈V

eλ
2
∑n

t=1 v
2[t]/2

)

≤ 1

λ
log
(
|V |eλ2 supv∈V (

∑n
t=1 v

2[t])/2
)

=
log |V |
λ

+
λ supv∈V

(∑n
t=1 v

2[t]
)

2

Choosing λ =

√
2 log |V |

supv∈V (
∑n

t=1 v
2[t])

completes the proof.
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