
Machine Learning Theory (CS 6783)

Lecture 5 : Minimax Rates, Statistical Learning and Uniform Convergence

1 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?

Minimax Rate = “Best Possible Guarantee” = minAlgo ŷ maxinstance setting Objective

PAC framework:

VPACn (F) := inf
ŷ

sup
DX ,f∗∈F

ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

A problem is “PAC learnable” if VPACn → 0. That is, there exists a learning algorithm that
converges to 0 expected error as sample size increases.
Non-parametric Regression:

VNRn (F) := inf
ŷ

sup
DX ,f∗∈F

ES:|S|=n
[
Ex∼DX

[
(ŷ(x)− f∗(x))2

]]
A statistical estimation problem is consistent if VNRn → 0.
Statistical learning:

Vstatn (F) := inf
ŷ

sup
D

ES:|S|=n
[
LD(ŷ)− inf

f∈F
LD(f)

]
A problem is “statistically learnable” if Vstatn → 0.
Statistical learning:

Vstatn (F) := inf
ŷ

sup
D

ES:|S|=n
[
LD(ŷ)− inf

f∈F
LD(f)

]
A problem is “statistically learnable” if Vstatn → 0.
Online learning:

Vsqn (F) := sup
x1

inf
ŷ1

sup
y1

sup
x2

inf
ŷ2

sup
y2
. . . sup

xn
inf
ŷn

sup
yn

{
1

n

n∑
t=1

`(ŷt, yt)− inf
f∈F

1

n

n∑
t=1

`(f(xt), yt)

}

A problem is “online learnable” if Vsqn → 0.

A statement in expectation implies statement in high probability by Markov inequality but more
generally one can also easily convert to exponentially high probability.
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1.1 Comparing the Minimax Rates

Proposition 1. For any class F ⊂ {±1}X ,

4VPACn (F) ≤ VNRn (F) ≤ Vstatn (F)

and for any F ⊂ RX ,
VNRn (F) ≤ Vstatn (F)

That is, if a class is statistically learnable then it is learnable under either the PAC model or
the statistical estimation setting

Proof. Let us start with the PAC learning objective. Note that,

11{ŷ(x)6=f∗(x)} =
1

4
(ŷ(x)− f∗(x))2

Now note that,

Px∼Dx (ŷ(x) 6= f∗(x)) = Ex∼DX

[
11{ŷ(x)6=f∗(x)}

]
=

1

4
Ex∼DX

[
(ŷ(x)− f∗(x))2

]
Thus we conclude that

4VPACn (F) ≤ VNRn (F)

Now to conclude the proposition we prove that the minimax rate for non-parametric regression is
upper bounded by minimax rate for the statistical learning problem (under squared loss).

To this end, in NR we assume that y = f∗(x) + ε for zero-mean noise ε. Now note that, Now
note that, for any ŷ,

(ŷ(x)− f∗(x))2 = (ŷ(x)− y − ε)2

= (ŷ(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + (f∗(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− y)

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− f∗(x)− ε)
= (ŷ(x)− y)2 − (f∗(x)− y)2 − 2ε(ŷ(x)− f∗(x))

Taking expectation w.r.t. y (or ε) we conclude that,

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
= E(x,y)∼D

[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
− Ex∼DX

[Eε [2ε(ŷ(x)− f∗(x))]]

= E(x,y)∼D
[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
= LD(ŷ)− inf

f∈F
LD(f)

where in the above distribution D has marginal DX over X and the conditional distribution
DY |X=x = N(f∗(x), σ). Hence we conclude that

VNRn (F) ≤ Vstatn (F)

when we consider statistical learning under square loss.
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2 No Free Lunch Theorem

The more expressive the class F is, the larger is VPACn (F),VNRn (F) and Vstatn (F). The no free
lunch theorem says that if F = YX the set of all function, then there is not convergence of minimax
rates.

Proposition 2. If |X | ≥ 2n then,

VPACn (YX ) ≥ 1

4

Proof. Consider DX to be the uniform distribution over 2n points. Also let f∗ ∈ YX be a random
choice of the possible 22n function on these points. Now if we obtain sample S of size at most n,
then

VPACn (YX ) = inf
ŷ

sup
DX ,f∗∈F

ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

≥ inf
ŷ

Ef∗
[
ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

]
= inf

ŷ
Ef∗

ES:|S|=n
 1

2n

2n∑
j=1

11{ŷ(xj)6=f∗(xj)}


≥ 1

2n
inf
ŷ

Ef∗

Ei1,...,in∼Unif[2n]

 ∑
j /∈{i1,...,in}

11{ŷ(xj) 6=f∗(xj)}


=

1

2n
inf
ŷ

Ei1,...,in∼Unif[2n]

Ef∗
 ∑
j /∈{i1,...,in}

11{ŷ(xj) 6=f∗(xj)}


But outside of sample S, on each x, f∗(x) can be ±1 with equal probability. Hence,

VPACn (YX ) ≥ 1

2n
inf
ŷ

Ei1,...,in∼Unif[2n]

Ef∗
 ∑
j /∈{i1,...,in}

11{ŷ(xj)6=f∗(xj)}

 ≥ 1

2n

n

2
=

1

4

This shows that we need some restriction on F even for the realizable PAC setting. We cannot
learn arbitrary set of hypothesis, there is no free lunch.

This tells us that we need to restrict the set of models F we consider,

3 Empirical Risk Minimization and The Empirical Process

One algorithm/principle/ learning rule that is natural for statistical learning problems is the Em-
pirical Risk Minimizer (ERM) algorithm. That is pick the hypothesis from model class F that best
fits the sample, or in other words,:

ŷerm = argmin
f∈F

n∑
t=1

`(f(xt), yt)
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Claim 3. For any Y, X , F and loss function ` : Y ×Y 7→ R (subject to mild regularity conditions
required for measurability), we have that

Vstatn (F) ≤ sup
D

ES
[
LD(ŷerm)− inf

f∈F
LD(f)

]
≤ sup

D
ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

Proof. Note that

ES [LD(ŷerm)]− inf
f∈F

LD(f)

= ES [LD(ŷerm)]− inf
f∈F

ES

[
1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
LD(ŷerm)− inf

f∈F

1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
LD(ŷerm)− 1

n

n∑
t=1

`(ŷerm(xt), yt)

]

since ŷerm ∈ F , we can pass to upper bound by replacing with supremum over all f ∈ F as

≤ ES sup
f∈F

[
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

]

≤ ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

This completes the proof.

Fact: Consider r.v. Z1, . . . , Zn drawn iid from some fixed distribution, assume Zt’s are bounded
by 1. Let µ = E[Z] be their expectation. We have the following bound on the average of these
random variables.

P

(∣∣∣∣∣µ− 1

n

n∑
t=1

Zt

∣∣∣∣∣ > θ

)
≤ 2 exp

(
−nθ

2

2

)

Now for any f ∈ F , let Zft = `(f(xt), yt) where (xt, yt) is drawn from D. Note that E[Zf ] =
E(x,y)∼D`(f(x), y). Hence note that for any single f ∈ F ,

PS

(∣∣∣∣∣E(x,y)∼D`(f(x), y)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣ > θ

)
≤ 2 exp

(
−nθ

2

2

)
Taking a union bound we conclude that:

PS

(
max
f∈F

∣∣∣∣∣E(x,y)∼D`(f(x), y)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣ > θ

)
≤ 2|F| exp

(
−nθ

2

2

)
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Now using the fact that for a non-negative random variable X, E[X] =
∫∞
0 P (X > x)dx we have

that for any choice of ε > 0:

ES

[
max
f∈F

∣∣∣∣∣E(x,y)∼D`(f(x), y)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

=

∫ ∞
0

PS

(
max
f∈F

∣∣∣∣∣E(x,y)∼D`(f(x), y)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣ > θ

)
dθ

≤
∫ ε

0
dθ +

∫ ∞
ε

PS

(
max
f∈F

∣∣∣∣∣E(x,y)∼D`(f(x), y)− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣ > θ

)
dθ

≤ ε+ 2|F|
∫ ∞
ε

exp

(
−nθ

2

2

)
dθ

= ε+
2|F|√
n

∫ ∞
√
nε

exp

(
−x

2

2

)
dx

≤ ε+
2|F|√
n
e−nε

2

Using ε =
√

log(2|F|)/n we have:

Vstatn (F) ≤ sup
D

ES
[
LD(ŷerm)− inf

f∈F
LD(f)

]
≤ sup

D
ES

[
sup
f∈F

∣∣∣∣∣E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

∣∣∣∣∣
]

≤ O

(√
log |F|
n

)
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