Machine Learning Theory (CS 6783)

Lecture 5 : Minimax Rates, Statistical Learning and Uniform Convergence

1 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?

Minimax Rate = "Best Possible Guarantee" = $\min_{\text{Algo } \hat{y}} \max_{\text{instance setting }} \text{Objective}$

PAC framework:

$$
\mathcal{V}_n^{PAC}(\mathcal{F}) := \inf_{\hat{\mathbf{y}}} \sup_{D_X, f^* \in \mathcal{F}} \mathbb{E}_{S : |S| = n} \left[\mathbb{P}_{x \sim D_x} \left(\hat{\mathbf{y}}(x) \neq f^*(x) \right) \right]
$$

A problem is "PAC learnable" if $\mathcal{V}_n^{PAC} \to 0$. That is, there exists a learning algorithm that converges to 0 expected error as sample size increases. Non-parametric Regression:

$$
\mathcal{V}_n^{NR}(\mathcal{F}) := \inf_{\hat{\mathbf{y}}} \sup_{D_X, f^* \in \mathcal{F}} \mathbb{E}_{S : |S| = n} \left[\mathbb{E}_{x \sim D_X} \left[(\hat{\mathbf{y}}(x) - f^*(x))^2 \right] \right]
$$

A statistical estimation problem is consistent if $\mathcal{V}_n^{NR} \to 0$. Statistical learning:

$$
\mathcal{V}_n^{stat}(\mathcal{F}) := \inf_{\hat{\mathbf{y}}} \sup_D \mathbb{E}_{S : |S| = n} \left[L_D(\hat{\mathbf{y}}) - \inf_{f \in \mathcal{F}} L_D(f) \right]
$$

A problem is "statistically learnable" if $\mathcal{V}_n^{stat} \to 0$. Statistical learning:

$$
\mathcal{V}_n^{stat}(\mathcal{F}) := \inf_{\hat{\mathbf{y}}} \sup_{D} \mathbb{E}_{S : |S| = n} \left[L_D(\hat{\mathbf{y}}) - \inf_{f \in \mathcal{F}} L_D(f) \right]
$$

A problem is "statistically learnable" if $\mathcal{V}_n^{stat} \to 0$. Online learning:

$$
\mathcal{V}_n^{sq}(\mathcal{F}) := \sup_{x_1} \inf_{\hat{y}_1} \sup_{y_1} \sup_{x_2} \inf_{\hat{y}_2} \sup_{y_2} \dots \sup_{x_n} \inf_{\hat{y}_n} \sup_{y_n} \left\{ \frac{1}{n} \sum_{t=1}^n \ell(\hat{y}_t, y_t) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right\}
$$

A problem is "online learnable" if $\mathcal{V}_n^{sq} \to 0$.

A statement in expectation implies statement in high probability by Markov inequality but more generally one can also easily convert to exponentially high probability.

1.1 Comparing the Minimax Rates

Proposition 1. For any class $\mathcal{F} \subset {\pm 1}^{\mathcal{X}}$,

$$
4\mathcal{V}_n^{PAC}(\mathcal{F}) \leq \mathcal{V}_n^{NR}(\mathcal{F}) \leq \mathcal{V}_n^{stat}(\mathcal{F})
$$

and for any $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}},$

$$
\mathcal{V}_n^{NR}(\mathcal{F}) \leq \mathcal{V}_n^{stat}(\mathcal{F})
$$

That is, if a class is statistically learnable then it is learnable under either the PAC model or the statistical estimation setting

Proof. Let us start with the PAC learning objective. Note that,

$$
\mathbf{1}_{\{\hat{\mathbf{y}}(x)\neq f^*(x)\}} = \frac{1}{4}(\hat{\mathbf{y}}(x) - f^*(x))^2
$$

Now note that,

$$
\mathbb{P}_{x \sim D_x}(\hat{\mathbf{y}}(x) \neq f^*(x)) = \mathbb{E}_{x \sim D_x} [\mathbf{1}_{\{\hat{\mathbf{y}}(x) \neq f^*(x)\}}]
$$

$$
= \frac{1}{4} \mathbb{E}_{x \sim D_x} [(\hat{\mathbf{y}}(x) - f^*(x))^2]
$$

Thus we conclude that

$$
4\mathcal{V}_{n}^{PAC}(\mathcal{F})\leq \mathcal{V}_{n}^{NR}(\mathcal{F})
$$

Now to conclude the proposition we prove that the minimax rate for non-parametric regression is upper bounded by minimax rate for the statistical learning problem (under squared loss).

To this end, in NR we assume that $y = f^*(x) + \varepsilon$ for zero-mean noise ε . Now note that, Now note that, for any $\hat{\mathbf{y}}$,

$$
(\hat{\mathbf{y}}(x) - f^*(x))^2 = (\hat{\mathbf{y}}(x) - y - \varepsilon)^2
$$

= $(\hat{\mathbf{y}}(x) - y)^2 - 2\varepsilon(\hat{\mathbf{y}}(x) - y) + \varepsilon^2$
= $(\hat{\mathbf{y}}(x) - y)^2 - (f^*(x) - y)^2 + (f^*(x) - y)^2 - 2\varepsilon(\hat{\mathbf{y}}(x) - y) + \varepsilon^2$
= $(\hat{\mathbf{y}}(x) - y)^2 - (f^*(x) - y)^2 + 2\varepsilon^2 - 2\varepsilon(\hat{\mathbf{y}}(x) - y)$
= $(\hat{\mathbf{y}}(x) - y)^2 - (f^*(x) - y)^2 + 2\varepsilon^2 - 2\varepsilon(\hat{\mathbf{y}}(x) - f^*(x) - \varepsilon)$
= $(\hat{\mathbf{y}}(x) - y)^2 - (f^*(x) - y)^2 - 2\varepsilon(\hat{\mathbf{y}}(x) - f^*(x))$

Taking expectation w.r.t. y (or ε) we conclude that,

$$
\mathbb{E}_{x \sim D_X} \left[(\hat{\mathbf{y}}(x) - f^*(x))^2 \right] = \mathbb{E}_{(x,y) \sim D} \left[(\hat{\mathbf{y}}(x) - y)^2 \right] - \mathbb{E}_{(x,y) \sim D} \left[(f^*(x) - y)^2 \right] - \mathbb{E}_{x \sim D_X} \left[\mathbb{E}_{\varepsilon} \left[2\varepsilon (\hat{\mathbf{y}}(x) - f^*(x)) \right] \right]
$$

\n
$$
= \mathbb{E}_{(x,y) \sim D} \left[(\hat{\mathbf{y}}(x) - y)^2 \right] - \mathbb{E}_{(x,y) \sim D} \left[(f^*(x) - y)^2 \right]
$$

\n
$$
= L_D(\hat{y}) - \inf_{f \in \mathcal{F}} L_D(f)
$$

where in the above distribution D has marginal D_X over X and the conditional distribution $D_{Y|X=x} = N(f^*(x), \sigma)$. Hence we conclude that

$$
\mathcal{V}_n^{NR}(\mathcal{F}) \leq \mathcal{V}_n^{stat}(\mathcal{F})
$$

when we consider statistical learning under square loss.

 \Box

2 No Free Lunch Theorem

The more expressive the class F is, the larger is $\mathcal{V}_n^{PAC}(\mathcal{F}), \mathcal{V}_n^{NR}(\mathcal{F})$ and $\mathcal{V}_n^{stat}(\mathcal{F})$. The no free lunch theorem says that if $\mathcal{F} = \mathcal{Y}^{\mathcal{X}}$ the set of all function, then there is not convergence of minimax rates.

Proposition 2. If $|\mathcal{X}| \geq 2n$ then,

$$
\mathcal{V}_n^{PAC}(\mathcal{Y}^{\mathcal{X}}) \ge \frac{1}{4}
$$

Proof. Consider D_X to be the uniform distribution over 2n points. Also let $f^* \in \mathcal{Y}^X$ be a random choice of the possible 2^{2n} function on these points. Now if we obtain sample S of size at most n, then

$$
\mathcal{V}_{n}^{PAC}(\mathcal{Y}^{X}) = \inf_{\hat{\mathbf{y}}} \sup_{D_{X}, f^{*} \in \mathcal{F}} \mathbb{E}_{S : |S| = n} [\mathbb{P}_{x \sim D_{x}} (\hat{\mathbf{y}}(x) \neq f^{*}(x))]
$$

\n
$$
\geq \inf_{\hat{\mathbf{y}}} \mathbb{E}_{f^{*}} [\mathbb{E}_{S : |S| = n} [\mathbb{P}_{x \sim D_{x}} (\hat{\mathbf{y}}(x) \neq f^{*}(x))]]
$$

\n
$$
= \inf_{\hat{\mathbf{y}}} \mathbb{E}_{f^{*}} \left[\mathbb{E}_{S : |S| = n} \left[\frac{1}{2n} \sum_{j=1}^{2n} \mathbb{1}_{\{\hat{\mathbf{y}}(x_{j}) \neq f^{*}(x_{j})\}} \right] \right]
$$

\n
$$
\geq \frac{1}{2n} \inf_{\hat{\mathbf{y}}} \mathbb{E}_{f^{*}} \left[\mathbb{E}_{i_{1},...,i_{n} \sim \text{Unif}[2n]} \left[\sum_{j \notin \{i_{1},...,i_{n}\}} \mathbb{1}_{\{\hat{\mathbf{y}}(x_{j}) \neq f^{*}(x_{j})\}} \right] \right]
$$

\n
$$
= \frac{1}{2n} \inf_{\hat{\mathbf{y}}} \mathbb{E}_{i_{1},...,i_{n} \sim \text{Unif}[2n]} \left[\mathbb{E}_{f^{*}} \left[\sum_{j \notin \{i_{1},...,i_{n}\}} \mathbb{1}_{\{\hat{\mathbf{y}}(x_{j}) \neq f^{*}(x_{j})\}} \right] \right]
$$

But outside of sample S, on each x, $f^*(x)$ can be ± 1 with equal probability. Hence,

$$
\mathcal{V}_n^{PAC}(\mathcal{Y}^{\mathcal{X}}) \ge \frac{1}{2n} \inf_{\hat{\mathbf{y}}} \mathbb{E}_{i_1,\dots,i_n \sim \text{Unif}[2n]} \left[\mathbb{E}_{f^*} \left[\sum_{j \notin \{i_1,\dots,i_n\}} \mathbf{1}_{\{\hat{\mathbf{y}}(x_j) \neq f^*(x_j)\}} \right] \right] \ge \frac{1}{2n} \frac{n}{2} = \frac{1}{4}
$$

This shows that we need some restriction on $\mathcal F$ even for the realizable PAC setting. We cannot learn arbitrary set of hypothesis, there is no free lunch.

This tells us that we need to restrict the set of models $\mathcal F$ we consider,

3 Empirical Risk Minimization and The Empirical Process

One algorithm/principle/ learning rule that is natural for statistical learning problems is the Empirical Risk Minimizer (ERM) algorithm. That is pick the hypothesis from model class $\mathcal F$ that best fits the sample, or in other words,:

$$
\hat{y}_{\text{erm}} = \underset{f \in \mathcal{F}}{\text{argmin}} \sum_{t=1}^{n} \ell(f(x_t), y_t)
$$

Claim 3. For any $\mathcal{Y}, \mathcal{X}, \mathcal{F}$ and loss function $\ell : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$ (subject to mild regularity conditions required for measurability), we have that

$$
\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \le \sup_D \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} L_D(f) \right]
$$

$$
\le \sup_D \mathbb{E}_S \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E} \left[\ell(f(x), y) \right] - \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right| \right]
$$

Proof. Note that

$$
\mathbb{E}_{S} [L_D(\hat{y}_{\text{erm}})] - \inf_{f \in \mathcal{F}} L_D(f)
$$
\n
$$
= \mathbb{E}_{S} [L_D(\hat{y}_{\text{erm}})] - \inf_{f \in \mathcal{F}} \mathbb{E}_{S} \left[\frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right]
$$
\n
$$
\leq \mathbb{E}_{S} \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right]
$$
\n
$$
\leq \mathbb{E}_{S} \left[L_D(\hat{y}_{\text{erm}}) - \frac{1}{n} \sum_{t=1}^{n} \ell(\hat{y}_{\text{erm}}(x_t), y_t) \right]
$$

since $\hat{y}_{\text{erm}} \in \mathcal{F}$, we can pass to upper bound by replacing with supremum over all $f \in \mathcal{F}$ as

$$
\leq \mathbb{E}_S \sup_{f \in \mathcal{F}} \left[\mathbb{E} \left[\ell(f(x), y) \right] - \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right]
$$

$$
\leq \mathbb{E}_S \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E} \left[\ell(f(x), y) \right] - \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right| \right]
$$

 \Box

This completes the proof.

Fact: Consider r.v. Z_1, \ldots, Z_n drawn iid from some fixed distribution, assume Z_t 's are bounded by 1. Let $\mu = \mathbb{E}[Z]$ be their expectation. We have the following bound on the average of these random variables.

$$
P\left(\left|\mu - \frac{1}{n}\sum_{t=1}^{n} Z_t\right| > \theta\right) \le 2 \exp\left(-\frac{n\theta^2}{2}\right)
$$

Now for any $f \in \mathcal{F}$, let $Z_t^f = \ell(f(x_t), y_t)$ where (x_t, y_t) is drawn from D. Note that $\mathbf{E}[Z^f] =$ $\mathbb{E}_{(x,y)\sim D} \ell(f(x), y)$. Hence note that for any single $f \in \mathcal{F}$,

$$
P_S\left(\left|\mathbb{E}_{(x,y)\sim D}\ell(f(x),y)-\frac{1}{n}\sum_{t=1}^n\ell(f(x_t),y_t)\right|>\theta\right)\leq 2\exp\left(-\frac{n\theta^2}{2}\right)
$$

Taking a union bound we conclude that:

$$
P_S\left(\max_{f \in \mathcal{F}} \left| \mathbb{E}_{(x,y)\sim D} \ell(f(x), y) - \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right| > \theta \right) \le 2|\mathcal{F}| \exp\left(-\frac{n\theta^2}{2}\right)
$$

Now using the fact that for a non-negative random variable X, $\mathbb{E}[X] = \int_0^\infty P(X > x) dx$ we have that for any choice of $\epsilon > 0$:

$$
\mathbb{E}_{S} \left[\max_{f \in \mathcal{F}} \left| \mathbb{E}_{(x,y) \sim D} \ell(f(x), y) - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right| \right]
$$
\n
$$
= \int_{0}^{\infty} P_{S} \left(\max_{f \in \mathcal{F}} \left| \mathbb{E}_{(x,y) \sim D} \ell(f(x), y) - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right| > \theta \right) d\theta
$$
\n
$$
\leq \int_{0}^{\epsilon} d\theta + \int_{\epsilon}^{\infty} P_{S} \left(\max_{f \in \mathcal{F}} \left| \mathbb{E}_{(x,y) \sim D} \ell(f(x), y) - \frac{1}{n} \sum_{t=1}^{n} \ell(f(x_t), y_t) \right| > \theta \right) d\theta
$$
\n
$$
\leq \epsilon + 2|\mathcal{F}| \int_{\epsilon}^{\infty} \exp\left(-\frac{n\theta^2}{2}\right) d\theta
$$
\n
$$
= \epsilon + \frac{2|\mathcal{F}|}{\sqrt{n}} \int_{\sqrt{n}\epsilon}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx
$$
\n
$$
\leq \epsilon + \frac{2|\mathcal{F}|}{\sqrt{n}} e^{-n\epsilon^2}
$$

Using $\epsilon = \sqrt{\log(2|\mathcal{F}|)/n}$ we have:

$$
\mathcal{V}_n^{\text{stat}}(\mathcal{F}) \le \sup_D \mathbb{E}_S \left[L_D(\hat{y}_{\text{erm}}) - \inf_{f \in \mathcal{F}} L_D(f) \right]
$$

$$
\le \sup_D \mathbb{E}_S \left[\sup_{f \in \mathcal{F}} \left| \mathbb{E} \left[\ell(f(x), y) \right] - \frac{1}{n} \sum_{t=1}^n \ell(f(x_t), y_t) \right| \right]
$$

$$
\le O\left(\sqrt{\frac{\log |\mathcal{F}|}{n}}\right)
$$