
Machine Learning Theory (CS 6783)

Lecture 4: Learning Frameworks, Examples

1 Setting up learning problems

1. X : instance space or input space
Examples:

• Computer Vision: Raw M ×N image vectorized X = [0, 255]M×N , SIFT features (typi-
cally X ⊆ Rd)
• Speech recognition: Mel Cepstral co-efficients X ⊂ R12×length

• Natural Language Processing: Bag-of-words features (X ⊂ Ndocument size), n-grams

2. Y: Outcome space, label space
Examples: Binary classification Y = {±1}, multiclass classification Y = {1, . . . ,K}, regres-
sion Y ⊂ R)

3. ` : Y × Y 7→ R: loss function (measures prediction error)
Examples: Classification `(y′, y) = 11{y′ 6=y}, Support vector machines `(y′, y) = max{0, 1 −
y′ · y}, regression `(y′, y) = (y − y′)2

4. F ⊂ YX : Model/ Hypothesis class (set of functions from input space to outcome space)
Examples:

• Linear classifier: F = {x 7→ sign(f>x) : f ∈ Rd}
• Linear SVM: F = {x 7→ f>x : f ∈ Rd, ‖f‖2 ≤ R}
• Neural Netoworks (deep learning): F = {x 7→ σ(Woutσ(WKσ(. . . σ(W2(W1σ(Winx)))))}

where σ is some non-linear transformation (Eg. ReLU)

Learner observes sample: S = (x1, y1), . . . , (xn, yn)

Learning Algorithm : (forecasting strategy, estimation procedure)

ŷ : X ×
∞⋃
t=1

(X × Y)t 7→ Y

Given new input instance x the learning algorithm predicts ŷ(x, S). When context is clear (ie.
sample S is understood) we will fudge notation and simply use notation ŷ(·) = ŷ(·, S). ŷ is the
predictor returned by the learning algorithm.

1

Example: linear SVM Learning algorithm solves the optimization problem:

wSVM = argmin
w

n∑
t=1

max{0, 1− ytw>xt}+ λ‖w‖

and the predictor is ŷ(x) = ŷ(x, S) = w>SVMx

1.1 PAC framework

Y = {±1}, `(y′, y) = 11{y′ 6=y}

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes
Px∼DX

(ŷ(x) 6= f∗(x))

1.2 Non-parametric Regression

Y ⊆ R, `(y′, y) = (y′ − y)2

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt) + εt where εt ∼ N(0, σ)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
=: ‖ŷ − f∗‖L2(DX)

1.3 Statistical Learning (Agnostic PAC)

Generic X , Y, ` and F

Samples generated as (x1, y1), . . . , (xn, yn) ∼ D where D is some unknown distribution over X ×Y.
Goal: Find ŷ that minimizes

E(x,y)∼D [`(ŷ(x), y)]− inf
f∈F

E(x,y)∼D [`(f(x), y)]

For any mapping g : X 7→ Y we shall use the notation LD(g) = E(x,y)∼D [`(g(x), y)] and so our goal
can be re-written as:

LD(ŷ)− inf
f∈F

LD(f)

Remarks:

1. ŷ is a random quantity as it depends on the sample

2. Hence formal statements we make will be in high probability over the sample or in expectation
over draw of samples

2

1.4 Online Learning

For t = 1 to n

(a) Input instance xt ∈ X is produced

(b) Learning algorithm outputs prediction ŷt

(c) True outcome yt is revealed to learner

End For

One can think of ŷt = ŷt(xt, ((x1, y1), . . . , (xt−1, yt−1))).
Goal: Find learning algorithm ŷ that minimizes regret w.r.t. hypothesis class F ⊂ YX given

by,

Regn =
1

n

n∑
t=1

`(ŷt, yt)− inf
f∈F

1

n

n∑
t=1

`(f(xt), yt)

2 Example 1: Classification using Finite Class, Realizable Setting

In this section we consider the classification setting where Y = {±1} and `(y′, y) = 1{y′ 6= y}. We
further make the realizability assumption meaning yt = f∗(xt) where f∗ is obviously not known to
the learner.

2.1 Online Framework

The online framework is just as described earlier with the realizability assumption added in. That
is, at every round the true label yt revealed to us is set as yt = f∗(xt) for some fixed f∗ not known
to the learning algorithm. However xt’s can be presented to us arbitrarily. First note that under
the realizability assumption, we have that

min
f∈F

1

n

n∑
t=1

`(f(xt), yt) =
1

n

n∑
t=1

1{f∗(xt) 6= yt} = 0

Hence the aim in such a framework is to simply minimize number of mistakes
∑n

t=1 `(ŷt, yt) and
prove mistake bounds.

Now say F = {f1, . . . , fN}, a finite set of hypothesis. What strategy can we provide for this prob-
lem? How well does it work?

If we simply pick some hypothesis that has not made a mistake so far, such an algorithm can make
a large number of mistakes (Eg. as many as N). A simple strategy that works in this scenario is
the following. At any point t, we have observed x1, . . . , xt−1 and labels y1, . . . , yt−1. Now say

Ft = {f ∈ F : ∀i ∈ [t− 1], f(xi) = yi} .

Now given xt, we pick ŷt = sign(
∑

f∈Ft
f(xt)). That is we go with the majority of predictions by

hypothesis in Ft. How well does this algorithm work?

3

Claim 1. For any sequence x1, . . . , xn, the above algorithm makes at most dlog2Ne number of
mistakes.

Proof. Notice that each time we make a mistake, ie. sign(
∑

f∈Ft
f(xt)) 6= yt, then we know

that at least half the number of functions in Ft are wrong and so each time we make a mistake,
|Ft+1| ≤ |Ft|/2 and hence, we can make at most log2N number of mistakes.

That is the average error is log2N
n .

2.2 PAC Framework

In the PAC framework, x1, . . . , xn are drawn iid from some fixed distribution DX and our goal is to
minimize Px∼Dx(ŷ(x) 6= f∗(x)) either in expectation or high probability over sample {x1, . . . , xn}.
Unlike the online setting, in the PAC setting one can simply pick any hypothesis that has not made
any mistakes on training sample. That is,

ŷ(·, S) = argminf∈F
∑

(xt,yt)∈S

1{f(xt) 6= yt} .

How well does this algorithm work? How should we analyze this?

Let us show a bound of error with high probability over samples. To this end we will use the so
called Bernstein concentration bound.

Fact: Consider binary r.v. Z1, . . . , Zn drawn iid. Let µ = E[Z] be their expectation. We have the
following bound on the average of these random variables. (notice that since Z’s are binary their
variance if given by µ− µ2)

P

(
µ− 1

n

n∑
t=1

Zt > θ

)
≤ exp

(
− nθ2

2µ+ θ
3

)

Now for any f ∈ F , let Zft = 1{f(xt) 6= f∗(xt) where xt are drawn from DX . Note that E[Zf] =
Px∼DX (f(x) 6= f∗(x)). Hence note that for any single f ∈ F ,

PS

(
Px∼DX (f(x) 6= f∗(x))− 1

n

n∑
t=1

1{f(xt) 6= f∗(xt)} > θ

)
≤ exp

(
− nθ2

2µ+ θ
3

)
Let use write the R.H.S. above as δ, and hence, rewriting, we have that with probability at least
1− δ over sample,

Px∼DX (f(x) 6= f∗(x))− 1

n

n∑
t=1

1{f(xt) 6= f∗(xt)} ≤
log(1/δ)

3n
+

√
Px∼DX (f(x) 6= f∗(x)) log(1/δ)

n

This upon further massaging (use inequality
√
ab ≤ a/2 + b/2) leads to the bound

Px∼DX (f(x) 6= f∗(x))− 2

n

n∑
t=1

1{f(xt) 6= f∗(xt)} ≤
2 log(1/δ)

n

4

Using union bound, we have that for any δ > 0, with probability at least 1 − δ over sample,
simultaneously,

∀f ∈ F Px∼DX (f(x) 6= f∗(x))− 2

n

n∑
t=1

1{f(xt) 6= f∗(xt)} ≤
2 log(|F|/δ)

n

Since ŷ ∈ F , from the above we conclude that, for any δ > 0, with probability at least 1 − δ over
sample,

Px∼DX (ŷ(x) 6= f∗(x))− 2

n

n∑
t=1

1{ŷ(xt) 6= f∗(xt)} ≤
2 log(|F|/δ)

n

But note that by realizability assumption and the definition of ŷ, we have that

n∑
t=1

1{ŷ 6= f∗(xt)} =

n∑
t=1

1{ŷ 6= yt} = 0

and so, with probability at least 1− δ over sample,

Px∼DX (ŷ(x) 6= f∗(x)) ≤ 2 log(|F|/δ)
n

5

