
Machine Learning Theory (CS 6783)

Lecture 3: Cover’s Result, Rademacher Complexity and Betting Game

Cover’s result is remarkable because it says that if a bound on error of some stable φ is possible
under random coin flips, then such bound is possible under any adversary!

So using this result, we will as promised prove our claim, but more generally we can ask what
are examples of stable φ’s and how far can we take this machinery. While we set our initial goal low,
now its time to consider more general case of regret against a class of prefixed models F . Instead
of majority (which is either all +1 or all −1 in hindsight), consider an arbitrary set F ⊂ {±1}n.
We would like to come up with a strategy that minimizes regret with respect to any choice in F
as:

Regn(F) :=

n∑
t=1

Eŷt∼qt
[

11{ŷt 6=yt}
]
−min

f∈F

n∑
t=1

11{ft 6=yt}

Our goal specifically is to answer, what is Cn(F) > 0 such that, there exists a prediction algorithm
such that against any adversary this algorithm can guarantee that:

Regn(F) ≤ Cn(F)

To this end we can use Cover’s lemma above with

φ(y1, . . . , yn) = min
f∈F

n∑
t=1

11{ft 6=yt} + Cn(F)

We will soon show that this function is stable but for now if you trust me that it is stable, note
that cover’s result tells us the smallest value of Cn(F). It is given by

Cn(F) =
n

2
− Eε

[
min
f∈F

n∑
t=1

11{ft 6=εt}

]

=
n

2
+ Eε

[
max
f∈F

n∑
t=1

− 11{ft 6=εt}

]

=
n

2
+ Eε

[
max
f∈F

n∑
t=1

−1

2
(1− ftεt)

]

=
n

2
+

1

2
Eε

[
max
f∈F

n∑
t=1

ftεt − 1

]

=
1

2
Eε

[
max
f∈F

n∑
t=1

ftεt

]
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Claim 1. For any F ⊆ {±1}n, the function

φ(y1, . . . , yn) = min
f∈F

n∑
t=1

11{ft 6=yt} + Cn(F)

is stable.

Proof. W.l.o.g. pick the last bit to flip, we find,

φ(y1, . . . , yn−1,+1)− φ(y1, . . . , yn−1,−1)

= min
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1}

}
−min

f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=−1}

}

= max
f ′∈F

min
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1} −
n−1∑
t=1

11{f ′t 6=yt} − 11{f ′n 6=−1}

}

≤ max
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1} −
n−1∑
t=1

11{ft 6=yt} − 11{fn 6=−1}

}
= max

f∈F

{
11{fn 6=+1} − 11{fn 6=−1}

}
≤ 1

Similarly we have, φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1) ≤ 1 and so we have stability.

Putting this together we have:

Lemma 2. There exists a randomized prediction strategy that ensures that

E

[
n∑
t=1

1{ŷt 6= yt}

]
−min

f∈F

n∑
t=1

1{ft 6= yt} ≤
1

2
Eε

[
max
f∈F

n∑
t=1

εtft

]

against any adversary and any F ⊂ {±1}n

Corollary 3. There exists a randomized prediction strategy that ensures that

E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

n∑
t=1

1{b 6= yt} ≤
√
n

2

1 Rademacher Complexity

Given a set F ⊆ Rn, we define the Rademcher complexity of this set as

Rn(F) =
1

n
Eε

[
sup
f∈F

n∑
t=1

ftεt

]

While we have already seen the Rademacher complexity as coming from cover’s result, it turns
out that this quantity or rather complexity measure is a key tool in Statistical learning theory.
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Hence lets try to see what the quantity represents. Note that if F was binary labels, then for any
vector f ∈ F , ‖f‖2 =

√
n and ‖ε‖2 =

√
n. Hence we can interpret,

1

n

n∑
t=1

ftεt =
1

n
f>ε =

f>ε

‖f‖2‖ε‖2
= cos(ε, f)

Hence, we can think of Rn(F) = Eε [maxf∈F cos(ε, f)], that is, how well we can correlate with
random draw of labels using set F .

Now before we go into statistical learning, let us get back to our bit prediction problem.

2 A Game of Betting

In the previous section, we assumed φ was stable. While stable φ’s consist of a large number of
benchmark, it might not be expressive enough for some problems. Unfortunately, if we want to do
classification, it is not easy to get rid of such an assumption easily. Instead below we consider a
slightly different betting game on binary outcomes where we are allowed to bet arbitrary amounts
on outcomes. In such game, the same idea as above can be used without requiring stability.

Consider a gambler who bets on the outcomes of games one every round. Specifically, on any
round t, the gambler can choose an amount |ŷt| to bet on the outcome of game between two players
or teams A and B. The gambler can choose to place this bet of |ŷt| on either team A to win or on
team B. If the chosen team wins, the gambler gains an additional amount of ŷt and if the chosen
team looses the gambler looses the bet amount of ŷt. This game of betting can be formalized as
the following linear game between the gambler and the house. Specifically, we can view the choice
of the gambler at round t as a real number ŷt. The magnitude ŷt denotes the bet amount and the
sign of ŷt denotes whether the bet is placed on team A or team B. The corresponding outcome of
the game is encoded by the variable yt ∈ {±1} which indicates whether team A won or team B. At
time t, −ŷt · yt denotes the loss of the gambler. That is if the gambler guessed the outcome right,
that is if sign(ŷt) = yt, then the loss is the negative value of −|ŷt| (or in other words the gambler
gains) and if the outcome is guessed in correctly the gambler looses the amount of |ŷt|.

At time t = 1, . . . , n, the forecaster chooses ŷt ∈ R based on the history y1, . . . , yt−1 and
then observes the value yt ∈ {±1}.

Given some benchmark function φ : {±1}n → R≥0,, the goal of the gambler is to ensure that
the loss of the gambler is smaller than this benchmark. In other words, the gambler would like to
ensure that,

∀y
n∑
t=1

−ŷtyt ≤ φ(y) (1)

Lemma 4. φ is achievable if and only if E [φ(ε1, . . . , εn)] ≥ 0. Further, in this case, the strategy
for the gambler is given by: ŷt = 1

2 · E[φ(y1:t−1,−1, εt+1:n)− φ(y1:t−1,+1, εt+1:n)].

Remark: stability is not required.
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Proof. Note that for any y1, . . . , yn−1 and yn ∈ {±1},

−ŷn · yn − φ(y1:n) = −yn
2

(φ(y1:n−1,−1)− φ(y1:n−1,+1))− φ(y1:n)

Hence, if yn = +1, then

−ŷn · yn − φ(y1:n) = −1

2
(φ(y1:n−1,−1)− φ(y1:n−1,+1))− φ(y1:n−1,+1)

= −1

2
(φ(y1:n−1,−1) + φ(y1:n−1,+1))

= −Eεn [φ(y1:n−1, εn)]

Similarly when yn = −1,

−ŷn · yn − φ(y1:n) =
1

2
(φ(y1:n−1,−1)− φ(y1:n−1,+1))− φ(y1:n−1,−1)

= −1

2
(φ(y1:n−1,−1) + φ(y1:n−1,+1))

= −Eεn [φ(y1:n−1, εn)]

Thus, for any yn,
−ŷn · yn − φ(y1:n) = −Eεn [φ(y1:n−1, εn)]

Next proceeding to n− 1 we see that for the strategy prescribed, for any yn−1,

−ŷn−1 · yn−1 − Eεn [φ(y1:n−1, εn)] = −Eεn−1,εn [φ(y1:n−2, εn−1, εn)]

Thus continuing we conclude that:

n∑
t=1

−ŷtyt − φ(y) = −Eε[φ(ε1, . . . , εn)] ≤ 0

from our premise and so we have proved the lemma.

Example 2.1. We have a gambler who likes to bet on games played between m teams. Assume
that the information about which pairs of teams play each other for the n matches is announced in
advance. Specifically, say we know that on round t, teams it and jt play each other. Let us further
denote by ni the number of games played by player i. This game of betting can be formalized in
the linear betting games framework above. As specific benchmark a gambler might consider is the
one where each of the m team is given a score represented by an m dimensional vector w. Further,
when team i plays team j, a bet of amount of |w[i] − w[j]| on the team with the larger score is
placed. Further, assume that the largest bet amount is restricted to B. The goal of the gambler is to
do as well as the best scoring of the teams selected in hindsight. This example, can be represented
by the benchmark φ{±1}n 7→ R as follows:

φ(y1, . . . , yn) = inf
w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt]) +
B

2n

m∑
i=1

√
ni (2)

≤ inf
w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt]) +
B

2

√
m

n
(3)
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This benchmark satisfies the property that E [φ(ε1, . . . , εn)] ≥ 0. This is because

E [φ(ε1, . . . , εn)] = E

[
inf

w∈Rm:maxi,j w[i]−w[j]≤B

1

n

n∑
t=1

yt · (w[it]−w[jt])

]
+
B

2n

m∑
i=1

√
ni

= E

[
inf

w∈[0,B]m

1

n

n∑
t=1

εt(w[it]−w[jt])

]
+
B

2n

m∑
i=1

√
ni

= E

[
1

n

m∑
i=1

min
w[i]∈[0,B]

n∑
t=1

w[i]εt
(

11{it=i} − 11{jt=i}
)]

+
B

2n

m∑
i=1

√
ni

= E

[
1

n

m∑
i=1

min

{
B

n∑
t=1

εt
(

11{it=i} − 11{jt=i}
)
, 0

}]
+
B

2n

m∑
i=1

√
ni

=
B

n

m∑
i=1

E

min


ni∑
j=1

εj , 0


+

B

2n

m∑
i=1

√
ni

≥ − B
2n

m∑
i=1

√
ni +

B

2n

m∑
i=1

√
ni = 0

where in the last line we used the fact that for any integer N , E
[
min

{∑N
j=1 εj , 0

}]
≥ −
√
N/2.

Hence, from Lemma 4 this benchmark is achievable by the gambler using the strategy ŷt = n ·
E[φ(y1:t−1,−1, εt+1:n)−φ(y1:t−1,+1, εt+1:n)]. Finally, noting that square-root is a concave function
and applying Jensen’s inequality, yields that B

2n

∑m
i=1

√
ni ≤ B

2

√
m
n .
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