
Machine Learning Theory (CS 6783)

Lecture 20: Contextual Bandits

So far we have seen the Bandit problem, both the multi-armed bandit and linear bandit settings.
In this lecture, we will briefly look at fancier versions of bandit problems. Specifically, we will look
at a contextual version of bandit problems.

1 Contextual Bandit Problem

Multi-armed bandit problem is one where we have N actions or arms and each day we pull one
and get losses based on what we pulled. This setting is great for very simple ad placement problem
for instance. Example, we have N ads and we want a strategy to display ad that is more likely
to be clicked. However, in more practical scenarios, we don’t just place ad’s without using other,
”contextual” information. For instance, when placing ad, we use information like, what season it
is, who the user is what is their history etc. The contextual bandit problem considers this more
realistic scenario.

• For t = 1 to T

– Nature produces context xt ∈ X
– Algorithm picks arm It ∈ [N] in a possibly randomized fashion while nature produces

loss vector `t

– Learner suffers loss `t[It]

Goal: Minimize regret w.r.t. class of policies F ⊂ [N]X given by

RegT =
T∑
t=1

`t[It]− inf
f∈F

T∑
t=1

`t[f(xt)]

That is, we want to do as well as the best policy in F which takes into account context xt before
picking an arm on each round. If F had just the N constant mappings of picking just each of the
N arms ignoring context, then this problem is same as the multi-armed bandit one.

What is a strategy here? Well we could simply ignore the fact that there are onlyN arms/options
on each round and just treat is as a multi-armed bandit problem over |F| arms (each policy is one
arm). However in this case, our regret bounds would be at least

√
|F| T and since we would like

to consider rich class of policies F whose cardinality could possibly be very very large compared
to n, this approach of plainly using the bandit algorithm would fail. However lets consider a more
careful reuse of the exponential weights algorithm. Recall from the Bandits lecture that the key to
getting the bandit result was to plug in unbiased estimates of losses into a more carefully analyzed
full information algorithm. Let us have a second look at what we had there.

1

2 EXP4 Algorithm

An appropriately modified version of exponential weights algorithm it turns out is effective for
contextual bandit problems, even when contexts and losses are adversarially chosen. Specifically,
we run exponential weights algorithm over F and when it comes time to pick an arm at round
t, we simply pick an expert f ∈ F according to distribution ŷt ∈ ∆(F) and then play the action
suggested by this expert as ŷt(xt). We use for the exponential weights algorithm, the unbiased
estimate of loss of expert f ∈ F as:

˜̀
t[f] =

1∑
f∈F :f(xt)=It ŷt[f]

1{f(xt) = It}`t[It]

This algorithm is called EXP4.

Lemma 1. For the EXP4 algorithm mentioned above, we have the following bound on expected
regret:

E [RegT] ≤ O
(√

NT log |F |
)

Proof. If we write down the local norm based bound we already derived for exponential weights
(mirror descent with entropy regularizer) algorithm, we have that

RegT (˜̀
1, . . . , ˜̀

T) ≤ η

2

T∑
t=1

∑
f∈F

ŷt[f]˜̀t[f]2 +
log |F|
η

where ˜̀
1, . . . , ˜̀

n are the losses over the experts in F for the T rounds that is fed to the full
information algorithm. ŷt is the distribution over the experts produced by the algorithm in round
t. Now the main thing to note is that at round t, if we pick an expert f ∈ F , we observe loss
`t[f(xt)]. But this is loss of arm f(xt) and so in reality we observe loss of not just f for that round
but rather all the other f ′ ∈ F that are such that f ′(xt) = f(xt). Lets make use of this information.
Specifically, let us define our unbiased estimate of loss to be:

˜̀
t[f] =

1∑
f∈F :f(xt)=It ŷt[f]

1{f(xt) = It}`t[It]

Why is this an unbiased estimate? Well consider our algorithm. It draws first g ∼ ŷt and then uses
action It = g(xt). Hence, for any f ∈ F ,

Eg∼ŷt
[
˜̀
t[f]
]

= Eg∼ŷt

[
1∑

f∈F :f(xt)=g(xt) ŷt[f]
1{f(xt) = g(xt)}`t[g(xt)]

]
=
∑
g∈F

ŷt[g]
1∑

f∈F :f(xt)=g(xt) ŷt[f]
1{f(xt) = g(xt)}`t[g(xt)]

=
∑

g∈F :g(xt)=f(xt)

ŷt[g]
1∑

f ′∈F :f ′(xt)=f(xt) ŷt[f
′]
`t[f(xt)]

= `t[f(xt)]

∑
g∈F :g(xt)=f(xt) ŷt[g]∑
f ′∈F :f ′(xt)=f(xt) ŷt[f

′]

= `t[f(xt)]

2

Hence if we use this new unbiased estimate, we have that:

RegT (˜̀
1, . . . , ˜̀

T) ≤ η

2

T∑
t=1

∑
f∈F

ŷt[f]

(
1∑

f∈F :f(xt)=It ŷt[f]
1{f(xt) = It}`t[It]

)2

+
log |F|
η

=
η

2

T∑
t=1

∑
f∈F

ŷt[f]

(
1∑

f∈F :f(xt)=It ŷt[f]

)2

1{f(xt) = It}`2t [It] +
log |F|
η

=
η

2

T∑
t=1

 ∑
f∈F :f(xt)=It

ŷt[f]

(1∑
f∈F :f(xt)=It ŷt[f]

)2

`2t [It] +
log |F|
η

=
η

2

T∑
t=1

`2t [It]∑
f∈F :f(xt)=It ŷt[f]

+
log |F|
η

Now taking expectation on both sides, we get:

E
[
RegT (˜̀

1, . . . , ˜̀
T)
]
≤ η

2

T∑
t=1

EIt

[
`2t [It]∑

f∈F :f(xt)=It ŷt[f]

]
+

log |F|
η

≤ η

2

T∑
t=1

N∑
k=1

 ∑
f∈F :f(xt)=k

ŷt[f]

 `2t [k]∑
f∈F :f(xt)=k ŷt[f]

+
log |F|
η

≤ η

2

T∑
t=1

N∑
k=1

`2t [k] +
log |F|
η

≤ ηNT

2
+

log |F|
η

Optimizing over η and recalling that expected regret of the bandit algorithm is upper bounded by
expected regret of the full information algorithm we conclude that

E [RegT] ≤ O
(√

NT log |F |
)

Thus we can in fact get logarithmic dependence on the number of policies and a
√
N dependence

for regret bound. This algorithm is known as EXP4 algorithm. This algorithm does have the
optimal regret bound up to constant factors.

3 ERM Oracle Efficient Algorithms

A drawback of this algorithm though is that when |F| is very large, this algorithm is computationally
inefficient. This is because, the algorithm maintains a distribution over F and the computation time
per round is linear in |F|. In general, this issue can be real. However, practically, to alleviate this
issue, one might want to assume access to an ERM oracle. That is, given a sequence of instances,

3

x1, `1, . . . , `m, xm, we assume that we can efficiently compute the f ∈ F that minimizes empirical
loss. That is an oracle that either exactly or approximately returns

f̂ERM = argmin
f∈F

m∑
t=1

˜̀
t[f(xt)]

Now in general, assumption of access to such an ERM oracle may not mean we can minimize regret.
However, if one assumes that context and loss are drawn from a fixed distribution, that is the iid
stochastic setting, then it is not hard to see that one can achieve regret that goes to 0 and only has
a poly-log dependence on |F|. To see this, say n were known in advance and consider the algorithm
that for first m rounds simply picks the uniform distribution over strategies and hence builds an
unbiased estimate over loss vectors as ˆ̀

t = NeIt`t[It], Now just as in multi-armed bandit setting,
(x1, ˆ̀

1), . . . , (xm, ˆ̀
m) is an unbiased estimate of (x1, `1), . . . , (xm, `m). Now from Hoeffding Azuma

inequality with union bound, one can argue that fERM obtained by running ERM oracle run on the
estimate is order N

√
log |F|/m sub-optimal. Hence if we use this hypothesis for all future n −m

rounds we obtain the upper bound of order

E [RegT] ≤ (T −m)N
√

log |F|/m+m ≤ T
√
N log |F|/m+m

Using m = N2/3(log |F|)1/3T 2/3 we get, the final bound of order O(N2 log |F|/n)1/3. If one uses a
better concentration than just Hoeffding Azuma, the bound can be improved to O(N log |F|/n)1/3

Another algorithm that is close in spirit to the so called epsilon-greedy algorithm which in every
round explores uniformly with a small probability and exploits by using ERM based on estimated
losses so far with remaining probability. This epsilon-greedy algorithm also attains the same upper
bound as the one this above naive algorithm attains. The idea is to play the following, first define
f̂t as

f̂t = ERM(x1, ˜̀
1, . . . , xt−1, ˜̀

t−1)

Now the algorithm for ε-greedy plays ŷt(xt) = f̂t(xt) with probability 1 − γ and ŷt(xt) is drawn
from the uniform distribution over the N Arms with probability γ. The main idea is the following.
First, the estimate of loss ˜̀

t ∈ RN

˜̀
t =

`t[It]

P (It)
eIt

The key idea to notice is that the loss is bounded by N
γ and further, the variance of the loss is

bounded by N
γ and so if we use Freedman’s inequality which is basically a variance based version

of Hoeffding Azuma, we can guarantee that the estimated losses are close to expected (which is `t
on average).

It turns out that this regret bound is not optimal. One can view the above as requiring that
on every round our loss estimates have variance bounded for every policy in the class by the same
value of N

γ . But clearly this seems more than necessary since as we go along, we know that only
some policies are candidates for being good policies and so a more careful analysis would be to do
a more careful exploration where we only explore in a way where for good policies, we have a nice
bound on variance of loss estimates. Such an algorithm needs to maintain a set of good policies Ft
on every round that shrinks as we go. Then we could pick an exploration distribution that only
needs to satisfy the guarantee that on such good policies, the variance is low. Such an algorithm is
referred to as policy elimination. One can in fact obtain the optimal rate of

√
N log |F|/n bound

4

using this algorithm. However, such an algorithm is not efficient as we need to maintain a set Ft
which is prohibitive. But this idea can be explored in a smarter fashion to design an algorithm
that is ERM oracle efficient and also attains the optimal regret bound. We will look at a sketch of
this in the next lecture.

5

