
Machine Learning Theory (CS 6783)

Lecture 2: Bit Prediction Cover’s Result

1 Bit Prediction Problem

Recap: n round bit prediction game where Player I (the learner) on each round t produces (possibly
randomized) prediction ŷt ∈ {±1}, to predict bit yt ∈ {±1} produced by Player II (nature or
adversary). We started with a simple goal of developing an algorithm that minimizes the following
notion of regret against any adversary (strategy for player II).

n∑
t=1

1{ŷt 6= yt} − min
b∈{±1}

n∑
t=1

1{b 6= yt}

We have the following facts about the above goal:

1. No algorithm can guarantee expected regret better than
√
n. (If y’s were generated by random

coin flips, any algorithm would suffer the regret of
√
n).

2. Any deterministic algorithm will suffer a regret of order n

3. Randomized algorithm that produces ŷt by sampling according to past frequency of +1 does
not work and suffers regret of order n.

So whats the best we can do?

Claim 1. There exists a randomized prediction strategy that ensures that

E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

n∑
t=1

1{b 6= yt} ≤
√
n

2

against any adversary!

Specifically this means that we have a strategy that never looses worse than
√
n against any

adversary (which is the best we could hope for even for optimal) and further, if we have uneven
number of heads than tails, we can win significantly more.
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To prove the above claim and much more, we first prove this following lemma, a result by
Thomas Cover (all the way back in 1965). In fact, the more general question we will answer will
be roughly in the form: For what function φ’s is it possible to ensure that, there exists forecaster
s.t.,

for any sequence,

number of mistakes made by forecaster ≤ φ(sequence).

The function φ controlling the number of mistakes is a measure of “complexity” or “predictiveness”
of the sequence. It captures our prior belief of what kinds of patterns might appear. For the Penny-
Matching game, φ may be related to the frequency of heads vs tails, or more fine-grained statistics,
such as predictability of the next outcome based on the last three outcomes. In fact, Shannon’s
mind reading machine was based on only 8 such states. Which φ can one choose? How to develop
an efficient algorithm for a given φ?

Lemma 2 (T. Cover’65). Let φ : {±1}n 7→ R be a function such that, for any i, and any
y1, . . . , yi−1, yi+1, . . . , yn,

|φ(y1, . . . , yi−1,+1, yi+1, . . . , yn)− φ(y1, . . . , yi−1,−1, yi+1, . . . , yn)| ≤ 1 , (stability condition)

then, there exists a randomized strategy such that for any sequence of bits,

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

if and only if,

Eεφ(ε1, . . . , εn) ≥ n

2

and further, the strategy achieving this bound on expected error is given by:

qt =
1

2
+

1

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

Once we have the above lemma, using

φ(y1, . . . , yn) = min
b∈{±1}

n∑
t=1

11{b 6=yt} +

√
n

2

we will conclude the result

Proof of Lemma.
We start by proving that if there exists an algorithm that guarantees that

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

then, Eε [φ(ε1, . . . , εn)] ≥ n/2.
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To see this, note that the regret bound implies that

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}]− φ(y1, . . . , yn) ≤ 0

for any y1, . . . , yn. Now simply let the adversary pick yt = εt as a Rademacher random variable.
Thus, taking expectation, this implies that,

0 ≥
n∑
t=1

Eŷt∼qt [Eεt1{ŷt 6= εt}]− Eεφ(ε1, . . . , εn) =
n

2
− Eεφ(ε1, . . . , εn)

Next we prove that if Eεφ(ε1, . . . , εn) ≥ n
2 , then ∃ strategy s.t.

∑n
t=1 Eŷt∼qt [1{ŷt 6= yt}] ≤

φ(y1, . . . , yn).

The basic idea is to prove this statement starting from n and moving backwards. Say we have
already played rounds up until round n − 1 and have observed y1, . . . , yn−1. Now let us consider
the last round. On the last round we use,

qn =
1

2
+

1

2
(φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))

Now note that if yn = +1 then Eŷn∼qn
[

11{ŷn 6=yn}
]

= Eŷn∼qn
[

11{ŷn=−1}
]

= 1 − qn and if yn = −1
then Eŷn∼qn

[
11{ŷn 6=yn}

]
= qn and hence for the choice of qn above, we can write

Eŷn∼qn
[

11{ŷn 6=yn}
]

= 1
2 −

yn
2 (φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))

Plugging in the above, note that for any yn (possibly chosen adversarially looking at qn), we have,

Eŷn∼qn
[

11{ŷn 6=yn}
]
− φ(y1, . . . , yn) (1)

=
1

2
− yn

2
(φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1))− φ(y1, . . . , yn)

=
1

2
− 1

2
(φ(y1, . . . , yn−1,−1) + φ(y1, . . . , yn−1,+1))

=
1

2
− Eεnφ(y1, . . . , yn−1, εn) (2)

Now recursively we continue just as above for n − 1 to 0. Let us do the n − 1th step and the
rest follows. To this end, note that just as earlier, if yn−1 = +1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
=

Eŷn−1∼qn−1

[
11{ŷn−1=−1}

]
= 1 − qn−1 and if yn−1 = −1 then Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= qn−1 and

hence for the choice of qn−1 = 1
2 + n

2 Eεn [φ(y1, . . . , yn−2,−1, εn)− φ(y1, . . . , yn−2,+1, εn)], we have

Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
= 1

2 −
yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))
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Thus we can conclude that,

Eŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
+ 1

nEŷn∼qn
[

11{ŷn 6=yn}
]
− φ(y1, . . . , yn)

=
1

2
+ 1

nEŷn−1∼qn−1

[
11{ŷn−1 6=yn−1}

]
− Eεnφ(y1, . . . , yn−1, εn) (From Eq.2)

= 1− yn−1

2 (Eεnφ(y1, . . . , yn−2,−1, εn)− Eεnφ(y1, . . . , yn−2,+1, εn))− Eεnφ(y1, . . . , yn−1, εn)

= 1− 1

2
(Eεnφ(y1, . . . , yn−2,+1, εn) + Eεnφ(y1, . . . , yn−2,−1, εn))

= 1− Eεn−1,εnφ(y1, . . . , yn−2, εn−1, εn)

Proceeding in similar way we conclude that,

n∑
t=1

Eŷt∼qt
[

11{ŷt 6=yt}
]
− φ(y1, . . . , yn) ≤ n

2n
− Eε1,...,εnφ(ε1, . . . , εn) =

n

2
− Eε1,...,εnφ(ε1, . . . , εn)

Hence, if Eε1,...,εnφ(ε1, . . . , εn) ≥ n/2 then we can conclude that, 1
n

∑n
t=1 Eŷt∼qt

[
11{ŷt 6=yt}

]
≤ φ(y1, . . . , yn)

as desired. Thus we conclude the proof of this lemma.

Cover’s result is remarkable because it says that if a bound on error of some stable φ is possible
under random coin flips, then such bound is possible under any adversary!

So using this result, we will as promised prove our claim, but more generally we can ask what
are examples of stable φ’s and how far can we take this machinery. While we set our initial goal low,
now its time to consider more general case of regret against a class of prefixed models F . Instead
of majority (which is either all +1 or all −1 in hindsight), consider an arbitrary set F ⊂ {±1}n.
We would like to come up with a strategy that minimizes regret with respect to any choice in F
as:

Regn(F) :=
n∑
t=1

Eŷt∼qt
[

11{ŷt 6=yt}
]
−min

f∈F

n∑
t=1

11{ft 6=yt}

Our goal specifically is to answer, what is Cn(F) > 0 such that, there exists a prediction algorithm
such that against any adversary this algorithm can guarantee that:

Regn(F) ≤ Cn(F)

To this end we can use Cover’s lemma above with

φ(y1, . . . , yn) = min
f∈F

n∑
t=1

11{ft 6=yt} + Cn(F)

We will soon show that this function is stable but for now if you trust me that it is stable, note
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that cover’s result tells us the smallest value of Cn(F). It is given by

Cn(F) =
n

2
− Eε

[
min
f∈F

n∑
t=1

11{ft 6=εt}

]

=
n

2
+ Eε

[
max
f∈F

n∑
t=1

− 11{ft 6=εt}

]

=
n

2
+ Eε

[
max
f∈F

n∑
t=1

−1

2
(1− ftεt)

]

=
n

2
+

1

2
Eε

[
max
f∈F

n∑
t=1

ftεt − 1

]

=
1

2
Eε

[
max
f∈F

n∑
t=1

ftεt

]

Claim 3. For any F ⊆ {±1}n, the function

φ(y1, . . . , yn) = min
f∈F

n∑
t=1

11{ft 6=yt} + Cn(F)

is stable.

Proof. W.l.o.g. pick the last bit to flip, we find,

φ(y1, . . . , yn−1,+1)− φ(y1, . . . , yn−1,−1)

= min
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1}

}
−min

f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=−1}

}

= max
f ′∈F

min
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1} −
n−1∑
t=1

11{f ′t 6=yt} − 11{f ′n 6=−1}

}

≤ max
f∈F

{
n−1∑
t=1

11{ft 6=yt} + 11{fn 6=+1} −
n−1∑
t=1

11{ft 6=yt} − 11{fn 6=−1}

}
= max

f∈F

{
11{fn 6=+1} − 11{fn 6=−1}

}
≤ 1

Similarly we have, φ(y1, . . . , yn−1,−1)− φ(y1, . . . , yn−1,+1) ≤ 1 and so we have stability.

Putting this together we have:

Lemma 4. There exists a randomized prediction strategy that ensures that

E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

n∑
t=1

1{b 6= yt} ≤
1

2
Eε

[
max
f∈F

n∑
t=1

εtft

]

against any adversary and any F ⊂ {±1}n
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