
Machine Learning Theory (CS 6783)

Lecture 19: Stochastic Multi-armed Bandit Lower Bound

1 Lower Bound Tools

For this section just to ease notation, assume losses on each arm take on a finite set of values (for
what we care you can just assume that losses are 0 or 1). To deal with more general case you
will need to deal with Radon Nykodym derivative and differential entropy etc. But the basic ideas
remain.

Key Idea: In these lower bounds, we will consider two loss distribution that are “close”
and the idea is that in one of them the optimal arm is different from the other one by the desired
sub-optimality level. To be able to do well, for instanced drawn from distribution one we need to
pick arm (after looking at samples) that is different from the one picked when we get instances
from distribution 2. However, if the two distributions are close, it is likely to get similar runs of
instances from both the distributions. Specifically, we will provide lower bounds via KL divergence
used to measure differences between the two distributions. We will demonstrate both instance
independent lower bound of

√
Kn and instance dependent lower bound that almost matches the

instance dependent upper bound of UCB (LCB).
First, let us start with a bound on KL divergence over distributions of runs under two different

product distribution over losses of arms.

Lemma 1. Let D and D′ be two distributions on the losses with (D1,D2, . . . ,DK) and (D′1,D′2, . . . ,D′K)
being the corresponding marginal distributions for the K arms. Let A be any stochastic bandit algo-
rithm (that is, the algorithm picks the next action to play (possibly randomly) based on past actions
and losses observed). In this case,

KL(PA,D,n|PA,D′,n) =

K∑
k=1

ER∼PA,D,n [nk,n] KL(Dk|D′k)

Proof. Consider any sequence R of action losses pairs we encounter, say

R = (I1, `1[I1], . . . , I1, `n[In])

Now

PA,D,n(R) =

n∏
t=1

PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PDIt (`t[It]) and similarly,

PA,D′,n(R) =
n∏
t=1

PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PD′It (`t[It])
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(I am abusing notation here to make life simpler. Basically we want to look at probability of the
run under the two distributions). Hence we can conclude that:

KL(PA,D,n|PA,D′,n) = ER∼PA,D,n

[
log

(∏n
t=1 PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PL∼D(L[It] = `t[It])∏n
t=1 PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PL∼D′(L[It] = `t[It])

)]

= ER∼PA,D,n

[
log

(∏n
t=1 PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PDIt (`t[It])∏n
t=1 PA(It|I1, `1[I1], . . . , It−1, `t−1[I1]) · PD′It (`t[It])

)]

= ER∼PA,D,n

[
n∑
t=1

log

(
PDIt (`t[It])

PD′It
(`t[It])

)]

= ER∼PA,D,n

[
n∑
t=1

E`t[It]∼DIt

[
log

(
PDIt (`t[It])

PD′It
(`t[It])

)]]

= ER∼PA,D,n

[
n∑
t=1

KL(PDIt |PD′It )

]

= ER∼PA,D,n

[
K∑
k=1

nk,nKL(PDk |PD′k)

]

=
K∑
k=1

ER∼PA,D,n [nk,n] KL(PDk |PD′k)

Another useful result that I will write down here (look up online for proof) is the relation-
ship between KL divergence and total variation distance. Total variation distance between two
distribution P and P ′ is written as

‖P − P ′‖TV = sup
A∈F

∣∣P (A)− P ′(A)
∣∣

where F above is the sigma algebra. It is easy to check that for countable sets, ‖P − P ′‖TV =
1
2

∑
ω∈Ω |P (ω)− P ′(ω)|.
The following two inequalities are useful:

1. Pinsker’s Inequality

‖P − P ′‖TV ≤
√

1

2
KL(P |P ′)

2. An exponential bound:

‖P − P ′‖TV ≤
√

1− exp (−KL(P |P ′))
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2 Instance Independent Lower Bound

Theorem 2. For all K ≥ 2 and any n > K, there exists a distribution over losses of arms such
that:

E [Regn] ≥ 1

8

√
K − 1

8n

Proof. Let D1 = B1/2−∆ and for all other k ∈ [2, . . . ,K], Di = B1/2 where Bθ is the Bernoulli
distribution with probability θ of a 1 and 1− θ of producing 0. Now the way we produce D′ is as
follows. Pick j∗ = argmin

k∈[K]:k 6=1
ER∼PA,D,n [nk,n]. Now set D’ to be such that for all k 6= j∗, D′k = Dk

and D′j∗ = D1/2−2∆ Note that for D′ optimal arm is j∗ while for D it is 1. Define event A to be

A = {ω ∈ Ω : n1,n ≤ n/2}

That is the event that arm 1 is played less than 1/2 the times. Now note two things. First,

ED [Regn|A] ≥ 1

2
∆

and

ED′ [Regn|Ac] ≥
1

2
∆

The first is true because we play optimal arm less than 1/2 the number of times and so we are ∆
suboptimal more than 1/2 the time. The second is also true because when we are in complement
of A, and distribution is D′, then we are playing again a ∆ sub-optimal arm more than 1/2 the
times. Hence we conclude that:

ED [Regn] + ED′ [Regn] ≥ ∆

2

(
PA,D′,n(Ac) + PA,D,n(A)

)
=

∆

2

(
1− PA,D′,n(A) + PA,D,n(A)

)
≥ ∆

2

(
1−

∣∣PA,D′,n(A)− PA,D,n(A)
∣∣)

≥ ∆

2

(
1−

√
1

2
KL(PA,D,n|PA,D′,n)

)
Now using lemma from section 1 we have for this case that

KL(PA,D,n|PA,D′,n) = ER∼PA,D,n [nj∗,n] KL(B1/2−∆|1/2− 2∆) ≤ 2n

k − 1
∆2

Hence we conclude that:

ED [Regn] + ED′ [Regn] ≥ ∆

2

(
1−

√
2n

k − 1
∆2

)
Hence we can conclude that:

max{ED [Regn] ,ED′ [Regn]} ≥ ∆

4

(
1−

√
2n

k − 1
∆2

)
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Setting ∆ =
√

K−1
8n yields the result that:

max{ED [Regn] ,ED′ [Regn]} ≥ ∆

8

and hence lower bound.

3 Instance Dependent Lower Bound

We use similar style proof technique now to provide an instance specific lower bound. This one
needs a more careful statement.

Theorem 3. For any Stochastic bandit algorithm (with binary losses) that guarantees a regret
bound of: E [Regn] ≤ Cn−β, we have that for any distribution D,

ED [Regn] ≥ 1

n

∑
k:∆k 6=0

2 log
(

∆kn
β

2C

)
∆k

≈ β

n

∑
k:∆k 6=0

log
(
n

2C

)
∆k

Proof. We already showed that

ED [Regn] =
1

n

∑
i:i 6=0

∆iE [ni,n]

Hence, for each k, we need to prove a lower bound on E [nk,n] for any sub-optimal k. Now we prove
a lower bound for a given k.

To this end, given a distribution D with mean losses of arms µ = (µ1, . . . , µK) where µk =
E`∼D [`[k]]. Note that since the losses are binary, the marginal distribution of loss of each arm
k is a Bernoulli distribution Bµk . Given an arm k, consider the product distribution D′ =
(Bµ1 , . . . , Bµk−1

, Bµk−2∆k
, Bµk+1

, . . . , BµK ). That is, for this new distribution D′, arm k is now
the optimal arm with margin ∆k. Now similar to the previous section, define event:

A = {ω ∈ Ω : nk,n > n/2}

Note that conditioned on this event, clearly, regret under distribution D is larger than ∆k/2. Hence,
overall,

ED [Regn] ≥ ∆k

2
PA,D,n[A]

On the other hand, conditioned on the complement of A, regret under distribution D′ is lower
bounded by ∆k/2 and so

ED′ [Regn] ≥ ∆k

2
PA,D′,n[Ac]

Hence, we have that

max{ED′ [Regn] ,ED [Regn]} ≥ ∆k

2

(
PA,D′,n[Ac] + PA,D,n[A]

)
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However, since max{ED′ [Regn] ,ED [Regn]} ≤ Cn−β (as the algorithm has a regret guarantee), we
have that:

Cn−β ≥ ∆k

2

(
PA,D′,n[Ac] + PA,D,n[A]

)
≥ ∆k

2

(
1 + PA,D,n[A]− PA,D′,n[A]

)
≥ ∆k

2

(
1− ‖PA,D,n − PA,D′,n‖TV

)
≥ ∆k

2

(
1−

√
1− exp

(
−KL

(
PA,D,n|PA,D′,n

)))
≥ ∆k

2
exp

(
−1

2
KL
(
PA,D,n|PA,D′,n

))
Hence we conclude that:

KL
(
PA,D,n|PA,D′,n

)
≥ 2 log

(
∆k

2Cn−β

)
On the other hand, note that by Lemma 1, we have that

KL
(
PA,D,n|PA,D′,n

)
=

K∑
i=1

ER∼PA,D,n [ni,n] KL(Di|D′i)

= ER∼PA,D,n [nk,n] KL(Dk|D′k)
= ER∼PA,D,n [nk,n] KL(Bµk |Bµk−2∆k

)

Now as long as µk ∈ (0.1, 0.9) we can conclude that

KL(Bµk |Bµk−2∆k
) ≤ ∆2

k

Hence putting it all together we can conclude that:

ER∼PA,D,n [nk,n] ≥
2 log

(
∆k

2Cn−β

)
∆2
k

Using this with the fact that ED [Regn] = 1
n

∑
i:∆i 6=0 ∆iE [ni,n] we can conclude that:

ED [Regn] ≥ 1

n

∑
k:∆k 6=0

2 log
(

∆kn
β

2C

)
∆k
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