
Machine Learning Theory (CS 6783)

Lecture 15: MD with Local norm bound, Learning With Bandit Feedback

1 Mirror Descent with Local Norms (full information case)

We have shown that if we are able to find a function R that is strongly convex w.r.t. some norm
‖ · ‖ then mirror descent algorithm with step size η using this function R has the following bound
on regret:

RegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

‖∇̃t‖2∗ +
1

η
sup
f∈F

∆R(f |ŷ1)

where ‖ · ‖∗ is the dual to the norm ‖ · ‖. We will now modify this result to replace the dual norm
with a local norm. This will turn out to be useful to obtain bandit algorithms.

Recall the mirror descent algorithm:

∇R(ŷ′t+1) = ∇R(ŷt)− η∇t & ŷt+1 = argmin
f∈F

∆R(f |ŷ′t+1)

Assume that the function R is twice differentiable and let let ∇2R(f) denote the Hessian of the
function at a point R. Now we prove the following claim.

Lemma 1. For any twice differentiable convex R, if we run mirror descent using step size η, then

nRegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

where zt is some convex combination of ŷt and ŷ′t+1 (here matrix M , ‖x‖2M = x>Mx)

Proof. We will recall the upper bound from the mirror descent proof of the form:〈
∇̃t, ŷt − f∗

〉
≤
〈
∇̃t, ŷt − ŷ′t+1

〉
+

1

η

(
∆R(f∗|ŷt)−∆R(f∗|ŷt+1)−∆R(ŷ′t+1|ŷt)

)
Now the key trick is that we start with the definition of Bregman divergence and use Taylor’s
theorem. Note that:

∆R(ŷ′t+1|ŷt) = R(ŷ′t+1)−R(ŷt)−
〈
R(ŷt), ŷ

′
t+1 − ŷt

〉
Now using Taylor’s theorem (+ intermediate value theorem) there exists a point zt that is some
convex combination of ŷ′t+1 and ŷt such that

R(ŷ′t+1)−R(ŷt)−
〈
R(ŷt), ŷ

′
t+1 − ŷt

〉
=

1

2
(ŷ′t+1 − ŷt)

>∇2R(zt)(ŷ
′
t+1 − ŷt) =

1

2
‖ŷ′t+1 − ŷt‖2∇2R(zt)
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Hence using this we can conclude that〈
∇̃t, ŷt − f∗

〉
≤
〈
∇̃t, ŷt − ŷ′t+1

〉
+

1

η
(∆R(f∗|ŷt)−∆R(f∗|ŷt+1))−

1

2η
‖ŷ′t+1 − ŷt‖2∇2R(zt)

Now note that for any invertible matrix M , ‖ · ‖M−1 is the dual norm to the norm ‖ · ‖M and hence
using the fact (as we did in the earlier mirror descent proof) that〈

∇̃t, ŷt − ŷ′t+1

〉
≤ η

2
‖∇̃t‖2∇2R(zt)−1 +

1

2η
‖ŷ′t+1 − ŷt‖2∇2R(zt)

we conclude that〈
∇̃t, ŷt − f∗

〉
≤ η

2
‖∇̃t‖2∇2R(zt)−1 +

1

η
(∆R(f∗|ŷt)−∆R(f∗|ŷt+1))

Summing over t and simplifying the telescoping sum over the Bregman divergences we we obtain
that

nRegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
(∆R(f∗|ŷ1)−∆R(f∗|ŷn+1))

≤ η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

2 Online Linear Optimization With Bandit Feedback

The bandit linear online learning problem is as follows:

For t = 1 to T

1. Learner picks ŷt ∈ F
2. Adversary picks ∇t simultaneously

3. Learner observes and suffers loss ŷ>t ∇t

End For

Goal: Minimize expected regret

RegT =
T∑
t=1

ŷ>t ∇t − inf
f∈F

T∑
t=1

f>∇t

Main Idea:

1. Obtain ŷt from a full information algorithm

2. Randomize move such that E[ŷt] = ŷt

3. Play ŷt and receive feedback ŷ>t ∇t
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4. Build unbiased estimate of ∇t based on feedback as E[∇̃t] = ∇t

5. Feed ∇̃t to a full information online linear algorithms

For bandit algorithms, adaptive vs oblivious adversaries make a difference. Adaptive adversaries
are ones that know the internal randomization of the learner up to given point while oblivious
adversaries only know the learning algorithms but not the random bits produced by the adversary.
That is, we can think of adversary (knowing the learning algorithm) first prefixing ∇1, . . . ,∇n and
producing them one by one. In this case, note that:

E [RegT ] = E

[
T∑
t=1

ŷ>t ∇t

]
− inf

f∈F

T∑
t=1

f>∇t

= E

[
T∑
t=1

ŷ>t ∇t

]
− inf

f∈F

T∑
t=1

f>E
[
∇̃t

]
≤ E

[
T∑
t=1

ŷ>t ∇t

]
− E

[
inf
f∈F

T∑
t=1

f>∇̃t

]

= E

[
T∑
t=1

E[ŷt]
>∇t

]
− E

[
inf
f∈F

T∑
t=1

f>∇̃t

]

= E

[
T∑
t=1

ŷ>t ∇t

]
− E

[
inf
f∈F

T∑
t=1

f>∇̃t

]

= E

[
T∑
t=1

ŷ>t E[∇̃t]

]
− E

[
inf
f∈F

T∑
t=1

f>∇̃t

]

= E

[
T∑
t=1

ŷ>t ∇̃t]− inf
f∈F

T∑
t=1

f>∇̃t

]
= E

[
RegT (∇̃1, . . . ∇̃T )

]
Hence overall we conclude that for this procedure:

E [RegT ] ≤ E
[
RegT (∇̃1, . . . ∇̃T )

]
(1)

The above basically tells us that we have a reduction from bandit algorithm to full information
algorithm. Hence, using this unbiased gradient estimate trick, we can apply a full information
algorithm on the estimates and the expected regret of this full information algorithm will be the
bound for our bandit algorithm. A word of caution though: typically our full information algorithms
depend on norms of gradient being bounded under some appropriate norm. Eg. exponential weights
algorithm on `∞ norm and gradient descent on `2 norm. However, while ∇t’s might have this norm
bounded, our estimates can have very large norms and this can cause our bounds to blow up. To
this end, we have two options: either we modify our full information algorithm (albeit at the cost
of worse bounds) so that the estimates have smaller norms or alternatively we are more careful to
get an adaptive bound for our full information algorithm to get tighter bounds in expectation. To
deal with this, we will use the MD with the local norm analysis and show that the expected local
norm is small.
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3 Example: Multi-armed Bandit

For this example we will use the exponential weights algorithm as the full information algorithm.
Recall that

R(f) =
N∑
i=1

f [i] log(f [i]) + log(N)

and note that
ˆy′t+1[j] = ŷt[j]× exp(−η∇t[j])

For a given ŷt we will simply draw it ∼ ŷt and play ŷt = eit (that is expert it) and note that clearly
E[ŷt] = ŷt. Further, for the unbiased estimate of loss, we use:

∇̃t =
e>it∇t

qt(it)
eit

So that: E[∇̃t] =
∑d

i=1 ŷt(i)
∇t[i]
ŷt(i)

ei = ∇t

Now note that:

∇2R(f) =


1

f [1] 0 0 0

0 1
f [2] 0 0

. . . . . . . . . . . .
0 0 0 1

f [N ]


Hence note that

∇2R(f)−1 =


f [1] 0 0 0

0 f [2] 0 0
. . . . . . . . . . . .
0 0 0 f [N ]


Hence using this in the local norm lemma we have the bound:

RegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

≤ η

2

T∑
t=1

N∑
i=1

∇̃2
t [i]zt[i] +

1

η
log(N)

Now recall that zt is of the form zt = αtŷt + (1− αt)ŷ
′
t+1 for some αt ∈ [0, 1] and so

zt[j] = αtŷt[j] + (1− α)ŷt[j]× exp(−η∇t[j]) ≤ ŷt[j](1 + exp(η))

Hence we conclude that

RegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

N∑
i=1

∇̃2
t [i]ŷt[i] +

1

η
log(N)

Now plugging in the form of ∇̃t =
e>it
∇t

ŷt(it)
eit we get,

RegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

∇2
t [it]

ŷt[it]
+

1

η
log(N)
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Now since
E [RegT ] ≤ E

[
RegT (∇̃1, . . . ∇̃T )

]
Taking expectation over the draw of actions we get:

E [RegT ] ≤ E

[
η

2

T∑
t=1

∇2
t [it]

ŷt[it]

]
+

1

η
log(N)

≤ η

2

T∑
t=1

E
[
∇2

t [it]

ŷt[it]

]
+

1

η
log(N)

=
η

2

T∑
t=1

E

 N∑
j=1

yt[j]
∇2

t [j]

ŷt[j]

+
1

η
log(N)

=
η

2

T∑
t=1

E

 N∑
j=1

∇2
t [j]

+
1

η
log(N)

≤ η

2
NT +

1

η
log(N)

Setting η =
√

2 log(N)/NT we conclude that for the bandit algorithm, the expected regret is
bounded as:

E [RegT ] ≤
√

2N log(N)T

4 Example: Multi-armed Bandit Different Algorithm

Let us this time we shall use MD with function R as

R(f) = −
N∑
i=1

log(f [i]) = −
N−1∑
i=1

log(f [i])− log

(
1−

N−1∑
i=1

f [i]

)
and using ŷ1 = 1/N1 Note that ∇R(f) = −[1/f [1], . . . , 1/f [N ]]> For a given ŷt we will simply
draw it ∼ ŷt and play ŷt = eit (that is expert it) and note that clearly E[ŷt] = ŷt. Further, for the
unbiased estimate of loss, we use:

∇̃t =
e>it∇t

qt(it)
eit

So that: E[∇̃t] =
∑d

i=1 ŷt(i)
∇t[i]
ŷt(i)

ei = ∇t just like in previous section.
Now note that:

∇2R(f) =


1

f2[1]
0 0 0

0 1
f2[2]

0 0

. . . . . . . . . . . .
0 0 0 1

f2[N ]


Hence note that

∇2R(f)−1 =


f2[1] 0 0 0

0 f2[2] 0 0
. . . . . . . . . . . .
0 0 0 f2[N ]
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Hence using this in the local norm lemma we have the bound:

T∑
t=1

∇̃>t ŷt −
T∑
t=1

∇̃>t f ≤
η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
∆R(f |ŷ1)

But note that:

∆R(f |ŷ1) = R(f)−R(ŷ1)−∇R(ŷ1)(f − ŷ1)

= −
N∑
i=1

log(f [i])−N log(N) ≤ N max
i∈[N ]

log(1/Nf [i]) +N

Now the R we picked is what is called a self-concordant barrier function for the simplex, Fur
such functions one can show the property that: there exists a constant c such that

‖ · ‖2∇2R(zt)−1 ≤ c‖ · ‖2∇2R(ŷt)−1

and so we get that:

T∑
t=1

∇̃>t ŷt −
T∑
t=1

∇̃>t f ≤
η

2

T∑
t=1

N∑
i=1

∇̃2
t [i]ŷ

2
t [i] +

N

η
max
i∈[N ]

(log(1/Nf [i]) + 1)

Now plugging in the form of ∇̃t =
e>it
∇t

ŷt(it)
eit we get,

T∑
t=1

∇̃>t ŷt −
T∑
t=1

∇̃>t f ≤
η

2

T∑
t=1

∇2
t [it] +

N

η
max
i∈[N ]

(log(1/Nf [i]) + 1)

Now one thing to note, if we take f = ei, RHS in the above bound blows up. Hence, we instead
take fi = (1 − 1/T )ei + 1/NT (that is best expert with a small amount of mixing of uniform
distribution). The idea is that comparing with this expert is almost same as comparing with best
expert with an additional additive term of +1 in our bound. Hence,

T∑
t=1

∇̃>t ŷt − min
i∈[N ]

T∑
t=1

∇̃>t ei ≤
η

2

T∑
t=1

∇2
t [it] +

N

η
(log(T ) + 1) + 1

Now since
E [RegT ] ≤ E

[
RegT (∇̃1, . . . ∇̃T )

]
Taking expectation over the draw of actions we get:

E [RegT ] ≤ E

[
η

2

T∑
t=1

∇2
t [it]

]
+
N

η
(log(T ) + 1) + 1

≤ η

2

T∑
t=1

E [∇t[it]] +
N

η
(log(T ) + 1) + 1

=
η

2

T∑
t=1

E
[
∇>t ŷt

]
+
N

η
(log(T ) + 1) + 1
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Hence we have shown that for any i ∈ [N ],

(1− η/2)E

[
T∑
t=1

∇>t ŷt

]
−

T∑
t=1

∇t[i] ≤
N

η
(log(T ) + 1) + 1

or rewriting:

E

[
T∑
t=1

∇>t ŷt

]
−

T∑
t=1

∇t[i] ≤
η

2(1− η/2)

T∑
t=1

∇t[i] +
1

(1− η/2)

N

η
(log(T ) + 1) + 1

Say we know the value L∗ = mini∈[N ]

∑T
t=1∇t[i] and we set η = min{1,

√
2N log(eT )

L∗ } then we have
that:

E

[
T∑
t=1

∇>t ŷt

]
− min

i∈[N ]

T∑
t=1

∇t[i] ≤ O


√√√√N log(T ) min

i∈[N ]

T∑
t=1

∇t[i] + 1


5 Example: Linear Bandit on Euclidian Ball

In this example F = {f : ‖f‖2 ≤ 1}. In this case we can use the logarithmic barrier

R(f) = − log(1− ‖f‖22)

In this case, using the mirror descent update we get:

RegT (∇̃1, . . . ∇̃T ) ≤ η

2

T∑
t=1

‖∇̃t‖2∇2R(zt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

Again for a barrier function we can show that there is a constant c such that: ‖ · ‖2∇2R(zt)−1 ≤
c‖ · ‖2∇2R(ŷt)−1 and so we get:

RegT (∇̃1, . . . ∇̃T ) ≤ cη

2

T∑
t=1

‖∇̃t‖2∇2R(ŷt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

Now our randomized strategy we use is

ŷt = ŷt + εt(λ
t
it)
−1/2vtit

where it ∼ unif{[d]} and λti, v
t
i are the i’th eigenvalue and eigenvector of ∇2R−1(ŷt). We can then

set
∇̃t = d (∇>t ŷt) εt

√
λtitv

t
it
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First, you can easily verify that the above is an unbiased estimate. Next, note that:

RegT (∇̃1, . . . ∇̃T ) ≤ cη

2

T∑
t=1

‖∇̃t‖2∇2R(ŷt)−1 +
1

η
sup
f∈F

∆R(f |ŷ1)

=
cd2η

2

T∑
t=1

(∇>t ŷt)2λtit(v
t
it)
>∇2R(ŷt)

−1vtit +
1

η
sup
f∈F

∆R(f |ŷ1)

=
cd2η

2

T∑
t=1

(∇>t ŷt)2 +
1

η
sup
f∈F

∆R(f |ŷ1)

≤ cd2ηT

2
+

1

η
sup
f∈F

∆R(f |ŷ1)

In this case, if instead of all of the euclidean ball of radius one we consider ball of radius 1− 1/T
then supf∈F ∆R(f |ŷ1) ≤ O(log(T )) and so optimizing over η we get

E[RegT ] ≤ E[RegT (∇̃1, . . . ∇̃T )] ≤ O(d
√
T log(T ))

8


