Machine Learning Theory (CS 6783)

Lecture 15: MD with Local norm bound, Learning With Bandit Feedback

1 Mirror Descent with Local Norms (full information case)

We have shown that if we are able to find a function R that is strongly convex w.r.t. some norm
|| - || then mirror descent algorithm with step size 1 using this function R has the following bound
on regret:
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where || - ||« is the dual to the norm || - [|. We will now modify this result to replace the dual norm
with a local norm. This will turn out to be useful to obtain bandit algorithms.
Recall the mirror descent algorithm:
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Assume that the function R is twice differentiable and let let VZR(f) denote the Hessian of the
function at a point R. Now we prove the following claim.

Lemma 1. For any twice differentiable convexr R, if we run mirror descent using step size n, then
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where z is some convex combination of §; and ¥, (here matriz M, ||z|3, =z Mz)

Proof. We will recall the upper bound from the mirror descent proof of the form:
= ~ * = ~ ~ 1 * |2 * | ~ ~
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Now the key trick is that we start with the definition of Bregman divergence and use Taylor’s
theorem. Note that:
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Now using Taylor’s theorem (+ intermediate value theorem) there exists a point z; that is some
convex combination of y;,, and y; such that

. . £\ - . L. . . . L. .
R(¥i41) — R(3t) — <R(yt)7y1/§+1 - Yt> = §(y1/5+1 - Yt)TVZR(Zt>(y1/s+1 —¥i) = 5”3’%1 - Yt”2v2R(zt)



Hence using this we can conclude that
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Now note that for any invertible matrix M, || - ||37-1 is the dual norm to the norm || - || and hence
using the fact (as we did in the earlier mirror descent proof) that
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Summing over ¢ and simplifying the telescoping sum over the Bregman divergences we we obtain
that
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2  Online Linear Optimization With Bandit Feedback

The bandit linear online learning problem is as follows:
Fort=1toT

1. Learner picks y; € F
2. Adversary picks V; simultaneously

3. Learner observes and suffers loss y, V;
End For

Goal: Minimize expected regret
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Main Idea:
1. Obtain y; from a full information algorithm

2. Randomize move such that E[y;] = y;

3. Play ¢; and receive feedback 3, V;



4. Build unbiased estimate of V; based on feedback as E[V,] = V,

5. Feed V; to a full information online linear algorithms

For bandit algorithms, adaptive vs oblivious adversaries make a difference. Adaptive adversaries
are ones that know the internal randomization of the learner up to given point while oblivious
adversaries only know the learning algorithms but not the random bits produced by the adversary.
That is, we can think of adversary (knowing the learning algorithm) first prefixing Vy,...,V,, and
producing them one by one. In this case, note that:
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Hence overall we conclude that for this procedure:
E [Regr] < B |Regr (V1. Vr)] (1)

The above basically tells us that we have a reduction from bandit algorithm to full information
algorithm. Hence, using this unbiased gradient estimate trick, we can apply a full information
algorithm on the estimates and the expected regret of this full information algorithm will be the
bound for our bandit algorithm. A word of caution though: typically our full information algorithms
depend on norms of gradient being bounded under some appropriate norm. Eg. exponential weights
algorithm on ¢, norm and gradient descent on ¢5 norm. However, while V;’s might have this norm
bounded, our estimates can have very large norms and this can cause our bounds to blow up. To
this end, we have two options: either we modify our full information algorithm (albeit at the cost
of worse bounds) so that the estimates have smaller norms or alternatively we are more careful to
get an adaptive bound for our full information algorithm to get tighter bounds in expectation. To
deal with this, we will use the MD with the local norm analysis and show that the expected local
norm is small.



3 Example: Multi-armed Bandit

For this example we will use the exponential weights algorithm as the full information algorithm.

Recall that
N

R(f) =" flillog(f[i]) + log(N)

i=1
and note that .
Yi1ld] = ¥ili] x exp(=nVij])
For a given y; we will simply draw i; ~ y; and play g, = e;, (that is expert i;) and note that clearly
E[g¢] = ¥+ Further, for the unbiased estimate of loss, we use:
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So that: E[@t] = Zz 1 yi(i )Vt([; =Vi
Now note that:
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Hence note that
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Hence using this in the local norm lemma we have the bound:
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Now recall that z is of the form z; = oy + (1 — o)y}, for some oy € [0,1] and so

z[j] = cuyi[i] + (1 — )9 [j] x exp(=nVi[j]) < 9:[5](1 + exp(n))

Hence we conclude that
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Now plugging in the form of V, = i G We get,
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Now since
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Taking expectation over the draw of actions we get:
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Setting n = 1/2log(N)/NT we conclude that for the bandit algorithm, the expected regret is
bounded as:
E [Regy] < /2N log(N)T



