Machine Learning Theory (CS 6783)

Lecture 13: Online Mirror Descent contd.

1 Recap

e Gradient descent best suited for Euclidean structure, ie. when #5 norms of f € F and V; € D
are small

e To get right rates one needs to look at the structures if 7 and D. Eg. finite experts problem
gradient descent only gets |Z—l‘ rate

e Mirror descent update :

VR(y;11) =VR(I:) —nVe & Y1 = argmin Ag(y, Yi+1)
y

e If R is 1-strongly convex w.r.t. some norm ||-|| (and ||-||, its dual) then using MD we get

B -0 \/<supfefR<f>>-supmnvui
- n

Structure of F and D captured via (supger R(f)) and supyep ||V]?, Eg. in the experts

setting using negative entropy, R(f) = Zi\il f(i)logf(i) + log(/N) MD recovers exponential

weights algorithm.
2 Strongly Convex Objectives and Faster Rates

The bounds we showed for online mirror descent and online gradient descent are tight for online lin-
ear optimization and as discussed before can also be used for online convex optimization in general.
However, if one knows in advance that the objectives are curved, strongly convex for instance, then
the rates can be improved and in fact using the same mirror descent/gradient descent algorithm
but with step sizes that vary with round ¢.

Example : Regularized SVM
A
U, (x,)) = max{1 —y - £ 'x, 0} + 2 [|f]5

More generally, in this section we shall assume that for each z € Z, the loss £(-, z) is A-strongly
convex w.r.t. norm ||-||,, that is,

UF,2) < U(E,2) + (VUE, 2),f —£) - % £ —£/||2

The results just as easily extend to mirror descent for other norms.



Algorithm : GD update:

Vir1 = Ur(ye —n:Ve)
and we use y1 =0

Claim 1. If we use the online gradient descent algorithm with n, = % then, whenever the losses
are \-strongly convezx, we get
B?logn

2An

Proof. Consider any f* € F, by strong convexity of loss, we have that,

Reg,, <

A -
(e 20) = 0E 2) < (V.92 = £ =T 50— 7))

A A )\ ~ 112
Vi ¥t = Vi1 + Vi1 — f*>—§ |y — £7[5

. . A .
Vi, ¥t = Vir1) + (Ve Vi —f*>—§ 3¢ — £*113

(
(

A/ 1 ~ A/ A/ * A ~ * (12
<V Yt+1> =+ E<Yt Y10 Y1 — f >_§ lye —f Hz
(

. 1 . . . . AL .
Vi3 - y;+1>+2—m(||f*—ytu§—uf* Fially = 19 = raall3) =5 15 — €13

N 1 . .
Yt_Yt+1H§+T (Hf* —YtHg_ Hf* t+1H2

IN

0o N W
293+ 9o = 9inll) =5 90— 13

IN

Ui 2 1 A2 A A %112
D) Hth2 + E (Hf* - Yt||2 - Hf* t+1H ) —5 ly: —f Hg

IN

n 1 A . . .
%BQ + 2, (Hf - Yt”g - Hf t+1” > ) lye — £ HQ

Summing over we have,

Zéyt,zt ) — 0", 2) <—Zm+z = (1 =3 1 = 924al}) =5 150 - 1
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Dividing through by n we prove the claim. O

2.1 Exp-concave losses and Online Newton Method

All losses are not made equal, some are more speciall We saw how one can get faster rates for
strongly convex losses. However strong convexity of the loss is a rather strong assumption. It
is possible to get faster rates for losses that are not strongly convex but still have some nice
properties. As an example consider linear prediction with squared loss in d dimensions. That is



((f, (x,y)) = (f"x —y)2. This loss is not strongly convex as a function of f w.r.t. any norm (don’t
confuse this with strong convexity of (§ — y)? w.r.t. §). However this loss does have curvature in
the direction we care about.

Throughout this subsection assume that F C R? s.t. |[f[l, < 1.

Assumption 2. Assume that the loss £ is such that, for any z and any £,f' € F,

UF,2) < U(F,2) + (VI(E, 2), F — f>—§(f’ — )T (VU 2) (VLE, 2) " (F 1)

A sufficient condition for the above is that loss ¢ is what is referred to as exp-concave and
1-Lipschitz (ie. ||VA(f,z)||, < 1). ¢ is said to be a-exp-concave if for all z, exp(—al(-,2)) is a
concave function. In this case A < 1 min{}, a}

Examples : linear prediction with squared loss 8 = 1, Logistic loss 8 = O(e™ %), ...

Algorithm : Use arbitrary y; € F and use A1 = Iz (I is identity matrix)

At = A+ V{Ve =% - nAL Ve Y= argn}in (¥ = Vi) A1 (§ — ¥i1)
ye

Think of the above as MD with R varying over time. Specifically R;(f) = %fTAtHf . In this
case Ap, (alb) = 5(a —b) " Ayy1(a —b).

Claim 3. Using n = % and o = % if we run the online Newton method, we get

dlog(n +1)
o =0 (w)

Proof sketch. Define Ry (f) = %fTAtHf and view the algorithm as

VRi(Y141) = VR(Y1) = 1Ve Vi1 = argn;__in Ap,(¥I¥i41)
ye

Now note that for any f* € F,

0§, z0) = 0(E*, 2) < (Vi 50— £5)—— (Ag, (F*[y0) — Ar,, (F]31))

1
n
Following the bound from MD proof,

N * ~ ~ 1 * |8 * |8 Ala
(Vi,y: — ) < <Vt,Yt - y£+1> + 5 (ARt(f Iyt) — Ag,(f \yQH) - ARt(yt‘yll‘ﬁFl))



Combining we get,
Uy, 2t) — L, 2) <V, 98 — Vi) + — (ARt(f V) = Ar,(F19141) — AR, (F¢/F141))
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Summing up and noticing the telescoping sum we get,
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To conclude the proof note that by matrix-determinant identity we have that for any vector x and
any invertible matrix B, det(B — zz ") = det(B)(1 — 2" B~'x) and so using B = A; + V,V/ and
r = V; we have:

(e w) = e  antae = % ()
Hence,
1 det(Ans1) 4 1 [<
nReg,, < ﬁlog <th(Al)> + 523 ;log 1+ Xj(Ant1)) +4 | < ﬁ (dlog(n) +4)



