
Machine Learning Theory (CS 6783)

Lecture 1 : A Bit of Fun

1 A Game of Mind Reading

Most of you guys would have played games like Rock-Paper-Scissors and Matching-Pennies while
growing up. The excitement of these games is in trying to predict the future — the next choice
of the opponent. It is the subtle cues from the other player’s past behavior that make the game
interesting. Does the opponent tend to play “Rock” after losing with “Scissors”?, do they try to
play more heads than tails?, does the opponent tend to stick with the same choice after winning a
round? We try to notice such patterns in behavior to tip the balance in our favor.

For the simplest concrete example let us consider the penny matching game. In this game both
players on each round place their coins simultaneously and can choose to have either heads or tails
faced up. If both coins match (either both heads or tails) then player 1 takes both pennies, if not
player 2 gets both pennies. The game of each player can be seen as predicting what the other
player would play and either match it (for player 1) or flip it (for player 2).

What is the optimal strategy for a player in this game?

What should the optimal strategy make or loose typically when playing n rounds
of this game with an opponent? What would the opponent make or loose typically?

To introduce some formalism, we shall think of game proceeding for n rounds and variable t
indicates the current round. On each round we will call player 1 the learner and player 1’s prediction
for round t we will denote by ŷt ∈ {±1}. Player 2 we will call nature or adversary and denote their
prediction as yt ∈ {±1}. The amount lost by player 1 (matching player) is then given by

n∑
t=1

1{yt 6= ŷt} −
n∑
t=1

1{yt = ŷt} = 2

n∑
t=1

1{yt 6= ŷt} − n = 2

(
n∑
t=1

1{yt 6= ŷt} −
n

2

)

1

Human beings are notorious at being bad at coming up with random sequences of bits. This led
to a famous (informal, in house) competition between David Hagelbarger and Claude Shannon in
the Bell Labs in the 1950’s. The two wanted to design computer programs to beat humans at the
game of penny matching. While at AT&T Bell Labs, they each built a machine—aptly called “mind
reader”—to play the game of Matching-Pennies. According to various accounts, the machines were
able to predict the sequence of heads/tails entered by an untrained human markedly better than
random guess, picking up on a variety of patterns of the past play. What would have happened if

Figure 1: Shannon’s Mind Reading Machine, MIT Museum. (Source: http://william-

poundstone.com/blog/2015/7/30/how-i-beat-the-mind-reading-machine)

the two machines were played against each other is still a mystery to us. But let us try to ask the
question of how do we start with designing such algorithms?

Lets set our aims low first, say you wanted to develop an algorithm that minimizes the following
notion of regret against not picking the majority over the n rounds.

E [Regn] = E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

n∑
t=1

1{yt 6= b}

If we could always make this quantity smaller than 0, then this would mean we have a strategy
that only makes money and never looses it in expectation. But unfortunately this is not possible,
a random adversary would inflict

√
n loss with constant probability. Why?

But let us just ask to make this quantity as small as we can against any adversary. When yt’s
are drawn from a fixed distribution I claim this is easy, Why, what is the strategy?

When the bits are not drawn iid, this problem is far more complicated and interesting.

Can you guys come up with strategies?

2

First off, any deterministic algorithm can be made to incur maximal regret. Specifically, think of
the process where learner deterministically on a round t predicts ŷt ∈ {±1}, then setting yt = −ŷt,
we guarantee that our average loss is 1 while in hindsight, minb∈{±1}

1
n

∑n
t=1 1{yt 6= b} is at worst

1/2. Hence deterministic algorithms like majority so far have to fail.

In fact, even the randomized algorithm that predicts based on estimated frequency so far qt =
1
2

1
t−1
∑t−1

j=1 yj + 1
2 fails. To see this, say we flip coins and with probability 2/3 we pick +1 and with

probability 1/3 its −1. But now say we sort these bits and present the n/3, bits of −1 first then
the 2n/3 bits of +1 next. In this case, note that the strategy qt = 1

2
1
t−1
∑t−1

j=1 yj + 1
2 (after the very

first round which we can ignore), makes 0 mistakes for the first n/3 rounds when −1 labels are
presented. But from then on, we have a larger expected error on every round. Specifically, we get,

1

n

n∑
t=1

Eŷt∼qt1{yt 6= ŷt} ≥
1

n

n∑
t=n/3+1

Eŷt∼qt1{+1 6= ŷt} =
1

n

n∑
t=n/3+1

(1− qt)

=
1

n

n∑
t=n/3+1

1− 1

2

1

t− 1

t−1∑
j=1

yj −
1

2

=

1

2n

n∑
t=n/3+1

(
1− 1

t− 1

(
t− 1− 2n

3

))
=

1

3

n∑
t=n/3+1

(
1

t− 1

)

Note that in the above,
∑n

t=n/3+1

(
1
t−1

)
is approximately log(3) > 1 or at least is a fixed constant

greater than 1 while minb∈{±1}
1
n

∑n
t=1 1{yt 6= b} = 1/3. Thus we see that for this algorithm, we

can never hope to get regret that diminishes to 0.

So is it at all possible to get regret to be o(n)?

Claim 1. There exists a randomized prediction strategy that ensures that

E [Regn] ≤
√
n

against any adversary!

Specifically this means that we have a strategy that never looses worse than
√
n against any

adversary (which is the best we could hope for even for optimal) and further, if we have uneven
number of heads than tails, we can win significantly more.

3

To prove the above claim and much more, we first prove this following lemma, a result by
Thomas Cover (all the way back in 1965). In fact, the more general question we will answer will
be roughly in the form: For what function φ’s is it possible to ensure that, there exists forecaster
s.t.,

for any sequence,

number of mistakes made by forecaster ≤ φ(sequence).

The function φ controlling the number of mistakes is a measure of “complexity” or “predictiveness”
of the sequence. It captures our prior belief of what kinds of patterns might appear. For the Penny-
Matching game, φ may be related to the frequency of heads vs tails, or more fine-grained statistics,
such as predictability of the next outcome based on the last three outcomes. In fact, Shannon’s
mind reading machine was based on only 8 such states. Which φ can one choose? How to develop
an efficient algorithm for a given φ?

Lemma 2 (T. Cover’65). Let φ : {±1}n 7→ R be a function such that, for any i, and any
y1, . . . , yi−1, yi+1, . . . , yn,

|φ(y1, . . . , yi−1,+1, yi+1, . . . , yn)− φ(y1, . . . , yi−1,−1, yi+1, . . . , yn)| ≤ 1

n
, (stability condition)

then, there exists a randomized strategy such that for any sequence of bits,

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

if and only if,

Eεφ(ε1, . . . , εn) ≥ 1

2

and further, the strategy achieving this bound on expected error is given by:

qt =
1

2
+
n

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

Once we have the above lemma, using φ(y1, . . . , yn) = inff∈F
1
n

∑n
t=1 11{ft 6=yt}+

1
2nEε

[
supf∈F

∑n
t=1 ftεt

]
which satisfies the stability condition, we can conclude the result.

4

