Machine Learning Theory (CS 6783)

Lecture 3 : Minimax Rates, Statistical Learning and Uniform Convergence

1 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?
Minimax Rate = “Best Possible Guarantee”

PAC framework:

VIAC(F) :=inf sup  Egg=n [Pamp, (¥(2) # f*(2))]
Y Dx,f*€F

A problem is “PAC learnable” if VI AC 5 0. That is, there exists a learning algorithm that
converges to 0 expected error as sample size increases.
Non-parametric Regression:

VYE(F):=inf sup Egsj=n [Esnny [(F(z) — *(2))?]]
Y Dx,f*eF

A statistical estimation problem is consistent if VN — 0.
Statistical learning:

Vfltat(]?) := inf sup Eg.s/=n [LD(S’) — inf LD(f)}
Y D feF

A problem is “statistically learnable” if Vstat — Q.
Statistical learning:

V;tat(]’-) -— inf SUPES:\S\:n [LD(y) — inf LD(f):|
y D fer

A problem is “statistically learnable” if Vstot — (.
Online learning:

1 1<
V3(F) :=supinfsupsupinfsup...supinfsup< — » £(Js,y:) — inf — > L(f(xy),
e (F) b et e o el ey in g n; (9t yt) fe}'n; (f(z1), yt)

A problem is “online learnable” if V5 — 0.

A statement in expectation implies statement in high probability by Markov inequality but more
generally one can also easily convert to exponentially high probability.



1.1 Comparing the Minimax Rates
Proposition 1. For any class F C {+1}%,

WTACF) < VIRF) < V()
and for any F C RY,

Vi H(F) S V()
That is, if a class is statistically learnable then it is learnable under either the PAC model or
the statistical estimation setting
Proof. Let us start with the PAC learning objective. Note that,
L. * 2

Ly ()£ f+(2)} = Z(Y(l‘) — f*(x))

Now note that,

Py, (¥(z) # (@) = Eony [ Lg)wr@))
1

= Bawny [((2) — f*(0))7]

Thus we conclude that
WACF) < VIR
Now to conclude the proposition we prove that the minimax rate for non-parametric regression is
upper bounded by minimax rate for the statistical learning problem (under squared loss).
To this end, in NR we assume that y = f*(x) 4 ¢ for zero-mean noise . Now note that, Now
note that, for any y,

F(x) - (@) =) —y—e)?
= (y(x) —y)* —2e(y(z) —y) + £
= (y(x) —y)* = (f*(x) —9)* + (f*(x) —y)* — 2e(y(x) —y) + &
= (y(x) —9)® — (f*(x) — y)* +2¢* — 2:(3(x) — v)
= (y(x) —y)® — (f*(x) —y)* +2° — 2:(3(x) — f*(x) —¢)
= (y(x) —y)* — (f*(x) —y)* = 2:(y(2) — f*(x))

Taking expectation w.r.t. y (or €) we conclude that,

Eonny [(¥(2) = F5(2))*] = E@yyop [(§(2) = 9)?] = E@yyon [(f* (@) = 9)?] — Eenny [Ee [26(3(2) — f*(2))]]
= IE(m,y)er [(5’($) - y)2] - E(m,y)ND [(f* (CC) - y)Z]
= Lp(y) — }gg__LD(f)

where in the above distribution D has marginal Dx over X and the conditional distribution
Dy|x—y = N(f*(x),0). Hence we conclude that

VA H(F) < V()

when we consider statistical learning under square loss. O



2 No Free Lunch Theorem

The more expressive the class F is, the larger is VPAC(F), VNE(F) and V5 (F). The no free
lunch theorem says that if 7 = Y% the set of all function, then there is not convergence of minimax
rates.

Proposition 2. If |X| > 2n then,

1
Vq];AC(yX) > =
4
Proof. Consider Dx to be the uniform distribution over 2n points. Also let f* € Y* be a random
choice of the possible 22 function on these points. Now if we obtain sample S of size at most n,
then

VEAC(YY) =inf sup  Egsi=n [Ponn, (F(x) £ f*(2))]
Y Dx,f*eF
> irylef* [Es:s|=n [Pz~p, (¥(x) # f*(2))]]

2n
‘ 1
= Hy}fEf* Eg.|s1=n m Z Ly @ptr )
=1

1.
> s Bre By it | D Wste)2r )
_jg{il,‘..,in}

I
= %lngil,...,iHNUnif[Qn} Epe | Y Ly(a)kr )
_]%{7»1 7777 i"}

But outside of sample S, on each z, f*(z) can be £1 with equal probability. Hence,

1 n

PAC ()X :

Vo, 2 (Y7) > 5 Hyleil,...,inNUnif[zn] E Q{'E . Ls@p2r@n| | 25,5 =1
JELL-5tn

This shows that we need some restriction on F even for the realizable PAC setting. We cannot
learn arbitrary set of hypothesis, there is no free lunch.

This tells us that we need to restrict the set of models F we consider,

3 Empirical Risk Minimization and The Empirical Process

One algorithm/principle/ learning rule that is natural for statistical learning problems is the Em-
pirical Risk Minimizer (ERM) algorithm. That is pick the hypothesis from model class F that best
fits the sample, or in other words,:

n

germ = argmin f(f(d?t), yt)
fin 3



Claim 3. For any YV, X, F and loss function £ :Y x Y +— R (subject to mild regularity conditions
required for measurability), we have that

Vztat(]:) < supEg |:LD(yerm) — inf L[)(f)]
D feF

E[(f(@),0)] — ~ > 0(f(zi), )

n

<supEg [sup
t=1

D feF

|

Proof. Note that

Es [Lp(Jerm)] — 12; Lp(f)

A 1 ¢
=Es [LD(yerm)] - lnf Es [n ZZ xt Ut ]
t=1

< Es | Lp(ferm) — inf. ﬁze ]
A 1~ -
< Es LD(yerm) - ﬁ Zg(yerm(wt)’yt)
t=1

since Jerm € F, We can pass to upper bound by replacing with supremum over all f € F as

1 n
E E[¢ - — l
< s Sup [£(f (), y)] n; (f(fvt),yt)]
1 n
E E[4 - = L
<Eg sup [e(f (@), 9)] = ; (f () ?/t)]
This completes the proof. O

e The question of whether minimax value converges to 0, or equivalently whether the problem is
learnable can now be understood by studying if, uniformly over class F does average converge
to expected loss 7

e For bounded losses, for any fixed f € F, the difference of average loss and expected loss for
a given f € F goes to 0 by Hoeffding bound.

e The difference of average loss and expected loss is an empirical process indexed by class F.
We study supremum (over F) of these empirical processes. This is the main question of
interest in empirical process theory.



