
Machine Learning Theory (CS 6783)

Lecture 16: Supplement

1 Two Equivalent Definitions of Convexity

For this section, say B is some vector space equipped with norm ‖ · ‖ and B∗ be the dual space
equipped with dual norm ‖ · ‖∗. For simplicity think of B and B∗ to simply be Rd. The following
are two equivalent definitions of convex functions.

Definition 1. A function f : B 7→ R is said to be convex if for all x, y ∈ B and any α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

The following is an equivalent definition in terms of gradients.

Definition 2. A function f : B 7→ R is said to be convex if for all x, y ∈ B

f(x) ≤ f(y) + 〈∇f(x), x− y〉

Why are the two definitions equivalent?
(1⇒ 2) First lets show that the first definition implies the second. Note that by definition of
directional derivative:

〈∇f(x), y − x〉 = lim
α→0

f(x+ α(y − x))− f(x)

α

= lim
α→0

f((1− α)x+ αy))− f(x)

α

≤ lim
α→0

(1− α)f(x) + αf(y)− f(x)

α

= lim
α→0

α(f(y)− f(x))

α

= f(y)− f(x)

Rearranging we see that definition 1 implies definition 2.

(2⇒ 1) Now to prove the other direction, starting with definition 2, we have the following two
inequalities:

f(αx+ (1− α)y) ≤ f(x) + 〈∇f(αx+ (1− α)y), αx+ (1− α)y − x〉
= f(x) + (1− α) 〈∇f(αx+ (1− α)y), y − x〉
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Similarly,

f(αx+ (1− α)y) ≤ f(y) + 〈∇f(αx+ (1− α)y), αx+ (1− α)y − y〉
= f(y) + α 〈∇f(αx+ (1− α)y), y − x〉

Hence summing up α times the first inequality and 1− α times the second we end up with

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) + (1− α)α 〈∇f(αx+ (1− α)y), y − x〉+
alpha(1− α) 〈∇f(αx+ (1− α)y), x− y〉

= αf(x) + (1− α)f(y)

This completes the proof.
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