Machine Learning Theory (CS 6783)

Lecture 16: Supplement

1 Two Equivalent Definitions of Convexity

For this section, say B is some vector space equipped with norm || - || and B* be the dual space
equipped with dual norm || - ||+. For simplicity think of B and B* to simply be R?. The following
are two equivalent definitions of convex functions.

Definition 1. A function f : B+ R is said to be convez if for all x,y € B and any « € [0, 1],

flaz+ (1 —a)y) < af(z)+ (1 —a)f(y)

The following is an equivalent definition in terms of gradients.

Definition 2. A function f : B +— R is said to be convex if for all xz,y € B

f(@) < fly) +{(Vf(2), 2 —y)

Why are the two definitions equivalent?
(1 =2) First lets show that the first definition implies the second. Note that by definition of
directional derivative:
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Rearranging we see that definition 1 implies definition 2.

(2=1) Now to prove the other direction, starting with definition 2, we have the following two
inequalities:

flaz + (1 = a)y) < f(z) + (Vf(az + (1 - a)y), ez + (1 - a)y — z)

f
fle)+ (1 —a)(Vf(ax+(1-a)y),y —x)



Similarly,

(y) +(Vflar + (1 - a)y),ar + (1 - a)y —y)

flaz+ (1 —a)y) < f
= f(y) + a(Vf(az + (1 - a)y),y —z)

Hence summing up « times the first inequality and 1 — « times the second we end up with

flaz+ (1 —a)y) <af(z) + (1 —a)f(y) + (1 —a)a(Vf(ar + (1 - a)y),y —z) +
alpha(l — a) (Vf(az + (1 — a)y),r — y)
=af(@)+(1-a)f(y)

This completes the proof.



