
Machine Learning Theory (CS 6783)

Lecture 2 : Minimax Rates

1 Setting up learning problems

1. X : instance space or input space
Examples:

• Computer Vision: Raw M ×N image vectorized X = [0, 255]M×N , SIFT features (typi-
cally X ⊆ Rd)

• Speech recognition: Mel Cepstral co-efficients X ⊂ R12×length

• Natural Language Processing: Bag-of-words features (X ⊂ Ndocument size), n-grams

2. Y: Outcome space, label space
Examples: Binary classification Y = {±1}, multiclass classification Y = {1, . . . ,K}, regres-
sion Y ⊂ R)

3. ` : Y × Y 7→ R: loss function (measures prediction error)
Examples: Classification `(y′, y) = 11{y′ 6=y}, Support vector machines `(y′, y) = max{0, 1 −
y′ · y}, regression `(y′, y) = (y − y′)2

4. F ⊂ YX : Model/ Hypothesis class (set of functions from input space to outcome space)
Examples:

• Linear classifier: F = {x 7→ sign(f>x) : f ∈ Rd}
• Linear SVM: F = {x 7→ f>x : f ∈ Rd, ‖f‖2 ≤ R}
• Neural Netoworks (deep learning): F = {x 7→ σ(Woutσ(W1σ(W2σ(. . . (WKσ(Winx)))))}

where σ is some non-linear transformation

Learner observes sample: S = (x1, y1), . . . , (xn, yn)

Learning Algorithm : (forecasting strategy, estimation procedure)

ŷ : X ×
∞⋃
t=1

(X × Y)t 7→ Y

Given new input instance x the learning algorithm predicts ŷ(x, S). When context is clear (ie.
sample S is understood) we will fudge notation and simply use notation ŷ = ŷ(·, S). ŷ is the
predictor returned by the learning algorithm.
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Example: linear SVM Learning algorithm solves the optimization problem:

wSVM = argmin
w

n∑
t=1

max{0, 1− ytw>xt}+ λ‖w‖

and the predictor is ŷ(x) = ŷ(x, S) = w>SVMx

1.1 PAC framework

Y = {±1}, `(y′, y) = 11{y′ 6=y}

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes
Px∼DX

(ŷ(x) 6= f∗(x))

1.2 Non-parametric Regression

Y ⊆ R, `(y′, y) = (y′ − y)2

Input instances generated as x1, . . . , xn ∼ DX where DX is some unknown distribution over input
space. The labels are generated as

yt = f∗(xt) + εt where εt ∼ N(0, σ)

where target function f∗ ∈ F . Learning algorithm only gets sample S and does not know f∗ or DX .

Goal: Find ŷ that minimizes

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
=: ‖ŷ − f∗‖L2(DX)

1.3 Statistical Learning (Agnostic PAC)

Generic X , Y, ` and F

Samples generated as (x1, y1), . . . , (xn, yn) ∼ D where D is some unknown distribution over X ×Y.
Goal: Find ŷ that minimizes

E(x,y)∼D [`(ŷ(x), y)]− inf
f∈F

E(x,y)∼D [`(f(x), y)]

For any mapping g : X 7→ Y we shall use the notation LD(g) = E(x,y)∼D [`(g(x), y)] and so our goal
can be re-written as:

LD(ŷ)− inf
f∈F

LD(f)

Remarks:

1. ŷ is a random quantity as it depends on the sample

2. Hence formal statements we make will be in high probability over the sample or in expectation
over draw of samples
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2 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?

Minimax Rate = “Best Possible Guarantee”

PAC framework:

VPAC
n (F) := inf

ŷ
sup

DX ,f∗∈F
ES:|S|=n [Px∼Dx (ŷ(x) 6= f∗(x))]

A problem is “PAC learnable” if VPAC
n → 0. That is, there exists a learning algorithm that

converges to 0 expected error as sample size increases.
Non-parametric Regression:

VNR
n (F) := inf

ŷ
sup

DX ,f∗∈F
ES:|S|=n

[
Ex∼DX

[
(ŷ(x)− f∗(x))2

]]
A statistical estimation problem is consistent if VNR

n → 0.
Statistical learning:

Vstatn (F) := inf
ŷ

sup
D

ES:|S|=n

[
LD(ŷ)− inf

f∈F
LD(f)

]
A problem is “statistically learnable” if Vstatn → 0.

A statement in expectation implies statement in high probability by Markov inequality.

2.1 Comparing the Minimax Rates

Proposition 1. For any class F ⊂ {±1}X ,

4VPAC
n (F) ≤ VNR

n (F) ≤ Vstatn (F)

and for any F ⊂ RX ,
VNR
n (F) ≤ Vstatn (F)

That is, if a class is statistically learnable then it is learnable under either the PAC model or
the statistical estimation setting

Proof. Let us start with the PAC learning objective. Note that,

11{ŷ(x)6=f∗(x)} =
1

4
(ŷ(x)− f∗(x))2

Now note that,

Px∼Dx (ŷ(x) 6= f∗(x)) = Ex∼DX

[
11{ŷ(x)6=f∗(x)}

]
=

1

4
Ex∼DX

[
(ŷ(x)− f∗(x))2

]
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Thus we conclude that
4VPAC

n (F) ≤ VNR
n (F)

Now to conclude the proposition we prove that the minimax rate for non-parametric regression is
upper bounded by minimax rate for the statistical learning problem (under squared loss).

To this end, in NR we assume that y = f∗(x) + ε for zero-mean noise ε. Now note that, Now
note that, for any ŷ,

(ŷ(x)− f∗(x))2 = (ŷ(x)− y − ε)2

= (ŷ(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + (f∗(x)− y)2 − 2ε(ŷ(x)− y) + ε2

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− y)

= (ŷ(x)− y)2 − (f∗(x)− y)2 + 2ε2 − 2ε(ŷ(x)− f∗(x)− ε)
= (ŷ(x)− y)2 − (f∗(x)− y)2 − 2ε(ŷ(x)− f∗(x))

Taking expectation w.r.t. y (or ε) we conclude that,

Ex∼DX

[
(ŷ(x)− f∗(x))2

]
= E(x,y)∼D

[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
− Ex∼DX

[Eε [2ε(ŷ(x)− f∗(x))]]

= E(x,y)∼D
[
(ŷ(x)− y)2

]
− E(x,y)∼D

[
(f∗(x)− y)2

]
= LD(ŷ)− inf

f∈F
LD(f)

where in the above distribution D has marginal DX over X and the conditional distribution
DY |X=x = N(f∗(x), σ). Hence we conclude that

VNR
n (F) ≤ Vstatn (F)

when we consider statistical learning under square loss.

4


