Machine Learning Theory (CS 6783)

Lecture 2 : Minimax Rates

1 Setting up learning problems

1. X : instance space or input space
Examples:

e Computer Vision: Raw M x N image vectorized X = [0,255]M*N SIFT features (typi-
cally X C R%)
e Speech recognition: Mel Cepstral co-efficients X C R12xlength
e Natural Language Processing: Bag-of-words features (X ¢ Ndocument size) 'p_oyamg
2. Y: Outcome space, label space

Examples: Binary classification ) = {£1}, multiclass classification ) = {1,..., K}, regres-
sion Y C R)

3. £:)Y x Y R: loss function (measures prediction error)
Examples: Classification £(y',y) = 1y+,), Support vector machines £(y’,y) = max{0,1 —

y -y}, regression £(y',y) = (y — y')?

4. F Cc Y¥: Model / Hypothesis class (set of functions from input space to outcome space)
Examples:

e Linear classifier: F = {x > sign(f ') : f € R%}
e Linear SVM: F = {zx > flz: f € R ||f|l2 < R}
e Neural Netoworks (deep learning): F = {z — o(Woyo(Wio(Wao (... Wro(Winz)))))}

where ¢ is some non-linear transformation
Learner observes sample: S = (z1,91),..., (Zn, Yn)

Learning Algorithm : (forecasting strategy, estimation procedure)

(X xW)i—Y

(@G:

y:X X

t=1

Given new input instance z the learning algorithm predicts y(z,.5). When context is clear (ie.
sample S is understood) we will fudge notation and simply use notation y = y(-,S). ¥y is the
predictor returned by the learning algorithm.



Example: linear SVM Learning algorithm solves the optimization problem:
n
WsyM = argmin Z max{0,1 — y;w 'z} + A|w]|
W=t

and the predictor is ¥(z) = y(z, ) = wdy

1.1 PAC framework

Y= {:l:l}a g(ylvy) = ]l{yliy}
Input instances generated as x1,...,x, ~ Dx where Dy is some unknown distribution over input
space. The labels are generated as
ye = f*(21)

where target function f* € F. Learning algorithm only gets sample S and does not know f* or Dx.

Goal: Find y that minimizes

Penpy (¥(2) # f7(2))

1.2 Non-parametric Regression

YCR, Uy.y)=(y —y)?

Input instances generated as x1,...,x, ~ Dx where Dy is some unknown distribution over input
space. The labels are generated as

ye = (@) + & where g, ~ N(0,0)

where target function f* € F. Learning algorithm only gets sample S and does not know f* or Dx.

Goal: Find y that minimizes

Eoopy [(¥(2) = f(@))*] = 15 = Fll Ly

1.3 Statistical Learning (Agnostic PAC)
Generic X, Y, £ and F

Samples generated as (z1,y1), ..., (Tn,Yn) ~ D where D is some unknown distribution over X’ x ).
Goal: Find y that minimizes

IE(ac,y)er [f(y(l‘), y)] — inf IE(a:,y)er [ﬁ(f(l’), y)]

For any mapping g : X +— ) we shall use the notation Lp(g) = E¢, ,)~p [£(9(2),y)] and so our goal
can be re-written as:

Lo(¥) = inf Lo(/)

Remarks:

1. y is a random quantity as it depends on the sample

2. Hence formal statements we make will be in high probability over the sample or in expectation
over draw of samples



2 Minimax Rate

How well does the best learning algorithm do in the worst case scenario?
Minimax Rate = “Best Possible Guarantee”

PAC framework:

VIAC(F)i=inf sup Eggj=n [Panp, (¥(2) # f*(2))]
Y Dx,f*eF

A problem is “PAC learnable” if VI’ AC 5 0. That is, there exists a learning algorithm that
converges to 0 expected error as sample size increases.
Non-parametric Regression:

VVE(F) =inf sup Egs=n [Eanny [(F(2) = f*(2))?]]
Y Dx.f*e€F

A statistical estimation problem is consistent if VNV — 0.
Statistical learning:

Vit (F) .= inf sup Eg,|sj=, |Lp(¥) — inf Lp(f)
s feF

A problem is “statistically learnable” if Vstat — .

A statement in expectation implies statement in high probability by Markov inequality.

2.1 Comparing the Minimax Rates
Proposition 1. For any class F C {£1}%,

AVEAC(F) < VIR(F) < vt (F)

and for any F C RY,
VIR (F) < Ve (F)

That is, if a class is statistically learnable then it is learnable under either the PAC model or
the statistical estimation setting

Proof. Let us start with the PAC learning objective. Note that,

L)t @)y = %Q‘?(ﬂf) = (@)

Now note that,

Pyp, (¥(x) # (%)) = Eonny [ Ly @)
1

= Beopy [(9(2) - (@)



Thus we conclude that
ATAC(F) < VI(F)

Now to conclude the proposition we prove that the minimax rate for non-parametric regression is
upper bounded by minimax rate for the statistical learning problem (under squared loss).

To this end, in NR we assume that y = f*(z) 4 € for zero-mean noise . Now note that, Now
note that, for any y,

F(x) = (@) =) —y—¢)?
= (y(x) —y)* —2e(y(z) —y) + £
= (¥(x) —y)* = (f*(x) —9)* + (f*(x) —y)* — 2e(y(x) —y) +&°
= (¥(x) —9)® = (f*(x) — y)* +2° — 2:(3(x) — v)
= (y(x) —y)® — (f*(x) —y)* +2° — 2e(3(x) — f*(z) —¢)
= (y(x) —y)* — (f*(x) —y)* = 2:(y(2) — f*(x))

Taking expectation w.r.t. y (or €) we conclude that,

ExNDX [(y(aj) - f*(x))z] = IE(m,y)er [(5’($) - y)2] - E(m,y)ND [(f*(x) -y
= IE(:1:,y)~D [(y(.%) - y)Q] - E(az,y)wD [(f* (.I‘) -y
= Lo(j) - juf L()

)?] = Eonpy [Ee [26(3(2) — £*(2))]

where in the above distribution D has marginal Dx over X and the conditional distribution
Dy |x—5 = N(f*(),0). Hence we conclude that

VYE(F) < Vit (F)

when we consider statistical learning under square loss. O



