next up previous
Next: Typed propositional formulas Up: Formulas Previous: Propositional calculus

Boolean valued formulas

If we consider a single-valued relation from propositions to their truth values, taken as Booleans, then we get an especially simple semantics. Let ${{\mathbb{B} }} = \{tt, f\!f\}$ and let $\mathbf{B}\!:\!Prop \times {{\mathbb{B} }}
\rightarrow Prop$ such that $P \Leftrightarrow \mathbf{B}(P, tt)$.

In classical mathematics one usually assumes the existence of a function like b, say $\mathbf{b}\!:\!Prop \rightarrow {{\mathbb{B} }}$ where $P
\Leftrightarrow \mathbf{b}(P) = tt$ in ${{\mathbb{B} }}$. But since b is not a computable function, this way of describing the situation would not be used in constructive mathematics. Instead we could talk about ``decidable propositions'' or ``boolean propositions.''Boolean proposition

\begin{displaymath}BoolProp ==
\{\langle P, v\rangle : Prop \times {{\mathbb{B} }} \vert P \Leftrightarrow (v =
tt~in~{{\mathbb{B} }})\} \end{displaymath}

Then there is a function $\mathbf{b} \in BoolProp \rightarrow {{\mathbb{B} }}$ such that $P \Leftrightarrow\left(\mathbf{b}(P) = tt\ \mbox{in}\ {{\mathbb{B} }}\right)$.

If we interpret formulas as representing elements of pure boolean propositions, then each variable Pi denotes an element of ${{\mathbb{B} }}$. An assignmenttruth assignment $\alpha$ is a mapping of variables into ${{\mathbb{B} }}$, that is, an element of $Variables \rightarrow {\mathbb{B} }$. Given an assignment $\alpha$ we can compute a boolean value for any formula F. Namely

          $V\!alue(F, \alpha) =$ if F is a variable, then $\alpha(F)$
    if F is $(F_1\: op\: F_2)$ then $V\!alue(F_1, \alpha)\: bop\:
V\!alue(F_2, \alpha)$
where bop is the boolean operation corresponding to the propositional operator op in the usual way, e.g.

  P     Q   P $\&_b$ Q P $\vee_b$ Q P $\Rightarrow_b$ Q
tt tt tt tt tt
ff tt ff tt tt
tt ff ff tt ff
ff ff ff ff tt


next up previous
Next: Typed propositional formulas Up: Formulas Previous: Propositional calculus
James Wallis
1999-09-17