The Impact of Network Topology on Pure Nash Equilibria in Graphical Games

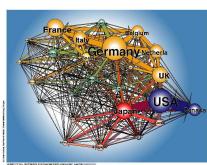
Bistra Dilkina, Carla Gomes and Ashish Sabharwal

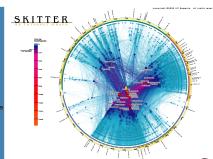
Graphical models of strategic interaction

Motivation: interactions between agents are local

International Trade

Internet Connectivity





Game-theoretic model of strategic interactions:

- -Undirected graph G captures locality of interactions
- -Each player p is represented by a vertex
- -A player's decisions depend directly only on his neighbors in the graph, N_p
- -Each player p has a set of actions A_p and a $\rm \hat{p}$ ayoff matrix U_p over the actions of p and N_p

Stability in non-cooperative setting:

- -Pure Nash Equilibrium (PNE)
- -Each player chooses an action that maximizes his payoff
- -No player has an incentive to unilaterally deviate in order to increase his payoff

Research Question: what is the relationship between the topological properties of the network and stability?

Answer: different interaction graph topologies lead to radically different behavior

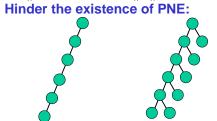
Facilitate the existence of PNE:

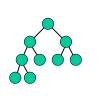
Complete graph

Bipartite graph

 (X_n, Y_n, E_{X_n})

Augmented
Bipartite graph



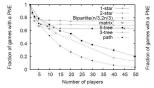


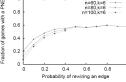
- •Theorem (Bipartite). Given a k-action random-payoff game on a complete bipartite graph $G_n = K(X_n, Y_n)$, $Pr[PNE] \rightarrow 1-1/e$ as $n \rightarrow \infty$.
- **•Theorem (Aug Bipartite).** Given a k-action random-payoff game on an augmented bipartite graph G_n = $K(X_n, Y_n, E_\chi)$ such that $|X_n \cup Y_n| = n$, $|X_n| = m$ and $1 \left(1 \frac{1}{k^m}\right)^{k^m} n/3 m \to \infty$ as $n \to \infty$, $Pr[PNE] \to as <math>n \to \infty$.
- **•Corollary (Star).** Given a 2-action random-payoff game on a star $Pr[PNE] \rightarrow 0.75$ as $n \rightarrow \infty$.
- •Theorem (Trees). Given a 2-action random-payoff game on a tree graph T_n with diameter that grows without bound with n, $Pr[PNE] \rightarrow 0$ as $n \rightarrow \infty$.

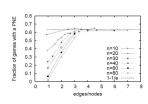
Summary of theoretical results:

Topology	Prob. of PNE
star	0.75
2-star	0.683
augmented bipartite graph	$1 - \left(1 - \frac{1}{2^m}\right)^{2^m}$
bipartite	$1 - \frac{1}{e} \approx 0.632$
matrix	$1 - \frac{1}{e} \approx 0.632$
tree	0
path	0

Experimental Results







Small World Graphs: start with a structured k-ring, for each edge with probability p rewire one endpoint randomly

G(n,m) Random graphs: construct a graph with n vertices and m edges, adding each edge between two random vertices

Summary: Shortcutting the long range dependencies between players through random re-wirings or adding random edges increases the probability of PNE