Probabilistic models for image synthesis - Part 1

November 7, 2023

1 Introduction

Note that the terminology here slightly differs from what was covered in class.

Our generative model consists of first sampling a “noise” vector z from some
prior distribution 7(z) and then passing it through a deterministic neural net-
work fg. To convert this into a probabilistic model, let us assume that fy
produces the parameters of a distribution of colors at each pixel. In the sim-
plest case, we can assume that fy produces the mean color for each pixel, and
then the image z is obtained by sampling from a Gaussian with fixed variance
centered on this mean:

Py(z|2) = N(fo(2),021) (1)
The final probabilistic model is then:
Py(x) = 7(2)Py(|2) (2)

Now we need to fit the parameters 6. Suppose we have a training dataset
D on which to fit the parameters §. We can fit § by maximizing the (log)
probability of the provided data, or (because we like minimization problems)
minimizing the negative log likelihood of the available data:

0" = arg mein Z (—log Py(x)) (3)
x€D

This in turn requires us to estimate Py(z) for each image (data point) z. Un-
fortunately, to do this we must marginalize out the "noise” vector that could
have generated this image:

Polz) = [#(2)Polalz)dz = BornlPofal2) (1)

Unfortunately this integral is intractable to calculate. In principle one could
estimate this by using a few samples to approximate the expectation. However,
because the image x is more or less a deterministic function of z, there exist
only a very small set of possible z’s for which Py(x|z) is non-zero. Hitting
these z by random sampling alone will require an intractably large number of
samples. Thus, prima facie, getting a good set of parameters 6 seems difficult
or impossible.

2 The variational approach

Variational techniques are a broad class of techniques in machine learning/statistics
that are designed precisely for getting around intractable marginalization prob-
lems, like the one above. The key idea in variational techniques is to replace
the hard-to-marginalize distribution with a more tractable approximation, and
then have an additional objective that ensures the approximate is close to the
original.

For our particular problem, we will replace the prior 7(z) with a different
distribution ¢(z;x). The idea here is that unlike 7, ¢ is actually dependent on
a particular image z, so that when we sample from g we get z values that are
in fact likely to produce x. Thus, instead of working with Py(x), we work with
the following alternative:

Py(a,q) = / 42 2) Py(2]2)dz = By [Pol2]2)] (5)

z

So we want to minimize:

—log 159 (Iv Q) = —log IEzwq(z;ac) [P9 (z|z)] (6)
< E2~q(z;x) [_ log Py (Z‘|Z)] (7)

where the last step uses Jensen’s inequality. Note that unlike our original ob-
jective, this upper bound is easy to estimate by sampling from ¢ and summing
up.

However, to use this, we need to choose a g so that what we are optimizing
is at least related to our original objective. Intuitively, since we got here by
replacing m with ¢, we can additionally add a loss term that penalizes the
difference between 7 and ¢. Thus, we may want to minimize:

Ly = Drrlq(z; 2)[|7(2)] 4 E.ng(zi) [log Po(z]2)] (8)
where Dy, is the KL divergence between distributions:

Dxr(qlp) = /Zq(z) 1ogggz; =E. 4 log ZEZ; 9)

What relationship does our new objective L, have with our old objective?

Let us see:

L, = Drrlq(z;2)|7(2)] + Ezng(zia) [~ log Po(z|2)] (10)
= E.rg(ea) log qu(z”)”) + By (21 [~ log Py (]2)] (11)
_ q(z)
= Ezwq(z;:z:) log m (12)
= Ezmq(z ;) 10 P?o(fz)) (13)
=By 08 o p s (Z(;;g o (14)
= Eaog(aim) log ‘I(E’?”“")) E.q(eia) [~ log Py ()] (15)
= Dir[q(2;2) || Py (2[2)] + E.ng(zia) [~ log Py ()] (16)
> Ezwq(z;l)[log Pg()] (Dkr > 0) (17)

Thus, L, is an upper bound on the true objective. Alternatively, —L, is a
lower bound on the log probability of the data (log Py(z)). Therefore, —L, is
called the evidence lower bound or ELBO.

3 Variational autoencoders

For variational autonecoders, the ”"noise” vectors are much lower dimensional
than images. ¢ is parametrized by a neural network that takes z as input and
produces the mean and variance for a distribution in the noise space. Because
both g and Py involve Gaussians, for which the KL divergence is easy to compute
in closed form, in principle VAEs are easy to optimize.

In practice however, VAEs find it a challenge to model distributions of high
resolution images. The reason is because during training, one needs to train
both the backward mapping from images to noise vectors as well as the forward
mapping from noise to images, while at the same time ensuring that at test time
we can sample noise and produce a realistic image. This proves to be a difficult
optimization in general.

