
Learning 3D reconstruction in 
underconstrained settings



2.5D vs 3D

• 2.5D: Reconstruct only the visible pixels
• 3D: Reconstruct full 3D shapes



Estimating depth from a single image

• Why is this even possible?



Estimating depth from a single image

• Why is this even possible?

Vanishing lines indicate 
plane orientations



Estimating depth from a single image

• Why is this even possible?

Apparent object height 
relative to true height 
indicates depth



Estimating depth from a single image

• Why is this even possible?

Occlusion indicates depth 
ordering



Estimating depth from a single image

• Image-in, image-out
• Similar to segmentation
• Again, resolution issues

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. David Eigen, Christian Puhrsch, Rob Fergus. In NIPS, 
2014 



Metric depth is a bad target



Metric depth is a bad target

• Only relative depths matter
• Only logarithmic scales matter

D(y, y⇤) =
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Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. David Eigen, Christian Puhrsch, Rob Fergus. In NIPS, 
2014 



Depth estimation today

• MegaDepth, learnt from large SfM models



Humans perceive surface normals, not just depth, 
through a combination of various pictorial cues

Surface perception in pictures. Koenderink, van Doorn and Kappers, 1992 Slide credit: Jitendra Malik



Estimating normals from a single image

Data-Driven 3D Primitives for Single Image Understanding. David F. Fouhey, Abhinav Gupta, Martial Hebert. In ICCV 2013.



Estimating normals from a single image



Estimating normals from a single image

Marr Revisited: 2D-3D Alignment via Surface Normal Prediction. Aayush Bansal, Bryan Russell, Abhinav Gupta. In CVPR, 2016



Estimating normals from a single image



2.5D vs 3D prediction

• Predicting depth / surface normals for every pixel is not full 
reconstruction
• “2.5D reconstruction”
• Does not contain parts of the scene that are hidden from view

• Can we do full 3D reconstruction?
• Simpler situation: can we do full 3D reconstruction of isolated 

objects?



Shapenet



Reconstructing 3D shapes from images using 
machine learning
• Input: 
• Single image or multiple images of the same object

• Output:
• 3D shape

• Representation?



Representation of 3D shapes

• Voxel grids
• Discretize volume into grid cells
• Identify cells that are occupied by object

• Advantages:
• Easy representation for ML: analog of pixels

• Disadvantages:
• Memory-inefficient
• Difficult to capture surface



Architectures for generating voxel grids

1. Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object 
reconstruction." European conference on computer vision. Springer, Cham, 2016.

2. Yan, Xinchen, et al. "Perspective transformer nets: Learning single-view 3d object reconstruction without 3d 
supervision." Advances in Neural Information Processing Systems. 2016.



Representation of 3D shapes

• Point clouds
• Each point lies on surface
• Advantages:

• Common representation produced by 
sensors (e.g. LiDAR)
• Sparse, so memory efficient

• Disadvantages:
• Difficult output to predict: sets
• Difficult to extract surface



Architecture for generating point clouds

• Not an established answer
• One possibility: cloud of points = samples from an underlying 

distribution
• Generative modeling

𝑧 ∼ 𝒩(0, 𝐼)

𝑥! , 𝑦! , 𝑧!

Fan, Haoqiang, Hao Su, and Leonidas J. Guibas. "A point set generation network for 3d object reconstruction from a 
single image." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Representation of 3D shapes

• Meshes
• Advantages
• Common in graphics
• Surfaces are triangles in the mesh
• Sparse representation: memory efficient
• Can easily encode color, texture, surface normals

• Disadvantages
• Extremely difficult to predict: graph



Architecture for producing meshes

• Assume connectivity and faces are the same as that of a sphere
• Move only vertices
• Cannot change topology of objects

Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the 
European Conference on Computer Vision (ECCV). 2018.



Where do we get ground truth?

• Models created by 3D artists
• Laser scans
• Structure-from-motion

# Categories 55 1000

# Instances / class 50 – 8000 1300



Tatarchenko, Maxim, et al. "What do single-view 3d reconstruction networks learn?." Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. 2019.

AtlasNet (light green, 0.38)     OGN (green, 0.46)    Matryoshka Networks (dark green, 
0.47)    Clustering (light blue, 0.46)     Retrieval (dark blue, 0.57))   

Challenges with single view 3D reconstruction

• Clear evidence that SVR networks are mostly doing retrieval

GT Predicted



Supervision?

• Fully supervised [1]
• Supervised with multiple views from known cameras [2]
• Predict shape from one image
• Project it to other views
• Ensure photometric consistency

• Supervised with multiple views from unknown cameras [3]
• Also jointly learn to predict camera pose

1. Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object 
reconstruction." European conference on computer vision. Springer, Cham, 2016.

2. Yan, Xinchen, et al. "Perspective transformer nets: Learning single-view 3d object reconstruction without 3d 
supervision." Advances in Neural Information Processing Systems. 2016.

3. Tulsiani, Shubham, et al. "Multi-view supervision for single-view reconstruction via differentiable ray 
consistency." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



3D reconstruction with limited ground truth

Kanazawa, Angjoo, et al. "Learning category-specific mesh reconstruction from image collections." Proceedings of the 
European Conference on Computer Vision (ECCV). 2018.



3D reconstruction with limited ground truth

Ye, Yufei, Shubham Tulsiani, and Abhinav Gupta. "Shelf-Supervised Mesh Prediction in the Wild." Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Neural representations of shape
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Implicit vs explicit equations

• Explicit representations of a curve
• 𝑦 = 𝑓(𝑥)

• Implicit representation of a curve
• 𝑓 𝑥, 𝑦 = 0



Implicit representations of 3D shape

• Shape can be represented by the level sets of a function 𝑓: ℝ! → ℝ

• Occupancy:
• 𝑓(𝑥, 𝑦, 𝑧) is the probability (𝑥, 𝑦, 𝑧) is inside the object
• Surface is given by 𝑓 𝑥, 𝑦, 𝑧 = 0.5

• Signed distance fields
• 𝑓(𝑥, 𝑦, 𝑧) is the signed distance of (𝑥, 𝑦, 𝑧) from the surface
• Sign is positive for points inside, negative for points outside
• Surface is given by 𝑓 𝑥, 𝑦, 𝑧 = 0



Neural implicit representations

• Traditionally 𝑓 is tabular array

• But can approximate with a 
neural network

Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape 
representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.



Neural Implicit shapes

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape 
representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. 2019.



Representation of 3D shapes

• Implicit shapes
• A shape is a function that takes 𝑥, 𝑦, 𝑧 as input and produces as 

output
• Boolean on whether it is inside shape or not
• Real value indicating distance from surface (”signed distance functions”)

• This function can be a neural network
• Thus each shape is a neural network
• Can additionally take e.g. feature vector as input

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape 
representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. 2019.
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Rendering with an implicit field
If true SDF, then can perform 
much faster – Sphere tracing



Generalization with neural fields

• Each neural field captures a particular shape
• Shape is encoded in the weights of the neural network
• How to generalize to new shapes?
• Latent codes
• Transfer learning



Implicit fields with latent codes



Producing latent codes for input shapes



Fitting an implicit field

• Occupancy
• Essentially a binary classification problem
• Sample points, label them as inside or outside the surface

• SDF
• Essentially a regression problem
• Sample points, label them with true signed distance

• In both cases, need watertight meshes to compute



Fitting implicit fields from point clouds

• Most 3D data comes in the form of point clouds
• Watertight meshes / ground truth SDFs generally hard to acquire
• How to train with point clouds?
• One approach: assume point clouds are sampled from underlying 

distribution
• Thus shape = generative model!



Fitting implicit fields from point clouds

Cai, Ruojin, et al. "Learning gradient fields for shape generation." European Conference on Computer Vision. Springer, 
Cham, 2020.



Representing high frequency details

• Standard neural networks use ReLU as activation
• So they approximate functions with piecewise linear functions
• Bad idea for high-frequency signals 
• Common in images, textured 3D surfaces etc
• Need lots and lots of pieces!



Representing high frequency details – Fourier 
features

• Instead of 𝑓 𝐯 , do 𝑓(γ 𝐯 )

Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." arXiv
preprint arXiv:2006.10739 (2020).

<latexit sha1_base64="eRxchPYaKY48wmZchXM1XG9A6PA=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CRahQikzIupGKLpxWcE+oB1KJs20oZkHSabYDsVfceNCEbf+hzv/xkw7C209EDiccy/35LgRZ1JZ1rextLyyurae28hvbm3v7Jp7+3UZxoLQGgl5KJoulpSzgNYUU5w2I0Gx73LacAe3qd8YUiFZGDyoUUQdH/cC5jGClZY65mHbx6rveslwgq5R8bE0Ko1PO2bBKltToEViZ6QAGaod86vdDUns00ARjqVs2VaknAQLxQink3w7ljTCZIB7tKVpgH0qnWSafoJOtNJFXij0CxSaqr83EuxLOfJdPZlmlfNeKv7ntWLlXTkJC6JY0YDMDnkxRypEaRWoywQlio80wUQwnRWRPhaYKF1YXpdgz395kdTPyvZF2b4/L1RusjpycATHUAQbLqECd1CFGhAYwzO8wpvxZLwY78bHbHTJyHYO4A+Mzx//AJRG</latexit>

v = (x, y, z)



Representing high frequency details – Fourier 
features

Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." arXiv
preprint arXiv:2006.10739 (2020).



Representing high frequency details - SIREN

• Instead of ReLU activations use sinusoidal activation
• Side-effect – all derivatives exist and are themselves SIREN models
• Allows to model both signal and derivative



Representing high frequency details

Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." Advances in Neural 
Information Processing Systems 33 (2020).



Scene representations and detail – hybrid 
representations
• Use a voxelized feature volume
• For each 3D point, index into feature volume with interpolation

• Location-dependent “latent code”!
• Use MLP to decode latent code into occupancy

Peng, Songyou, et al. "Convolutional occupancy networks." European 
Conference on Computer Vision. Springer, Cham, 2020.



Scene representations and detail – hybrid 
representations
• Challenge: might need many many voxels

• With multiple spatial resolutions
• Once again memory constraints
• Idea: maintain a smaller hash table of features

• Hash voxel coordinates

Müller, Thomas, et al. "Instant neural graphics 
primitives with a multiresolution hash 
encoding." arXiv preprint arXiv:2201.05989 (2022).



Generalizing neural fields through transfer 
learning
• Use meta-learning framework
• Learn initialization for network 𝜃!
• In each training iteration
• Sample a shape
• Perform SGD steps to update parameters to 𝜃+ + Δ𝜃
• Backpropagate final loss to update 𝜃+

• Compared to latent code approach, allows greater fidelity/cheaper 
networks since new shapes can use different weights

Sitzmann, Vincent, et al. "Metasdf: Meta-learning signed distance functions." arXiv preprint arXiv:2006.09662 (2020).



Using implicit fields for 3D reconstruction



From single objects to scenes – problems 
with distance fields
• Signed distance fields no longer meaningful
• Unsigned distance fields meaningful but hard to analyze
• One approach: ray distance

• For each point on the ray, distance to nearest intersection of the ray
• But dependent on view

Kulkarni, Nilesh, Justin Johnson, and David F. Fouhey. "What's Behind the Couch? Directed Ray Distance Functions (DRDF) for 3D Scene Reconstruction." arXiv preprint 
arXiv:2112.04481 (2021).



Neural fields of radiance



Radiance

• Pixels measure radiance

This pixel
Measures radiance in 

this direction



Radiance fields
• Radiance field 𝑐 𝒙, 𝒅
• Also have density 𝜎(𝒙) : where are the 

surfaces? 

This pixel
Measures this radiance 

value

𝑐(𝒙, 𝒅)



Volume rendering with radiance fields

• Pixels measure radiance



Volume rendering with radiance fields

Observed color

Integral along ray

Soft visibility



Neural radiance fields

Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." European conference 
on computer vision. Springer, Cham, 2020.



Connections to classical algorithms: Space 
carving



Connections to classical algorithms: Space 
carving



Leveraging classical 3D reconstruction



Generalizing neural radiance fields across 
scenes
• Key idea: have neural network explicitly look up other views instead 

of storing radiance

Wang, Qianqian, et al. "Ibrnet: Learning multi-view image-based rendering." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Generalizing neural radiance fields across 
scenes
• Key idea: have neural network explicitly look up other views instead 

of storing radiance

Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Neural fields of semantics

• Can use neural fields to store not just color but also semantics
• Useful way to encode cross-view consistency of recognition

Kundu, Abhijit, et al. "Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2022.



Other representations of 3D structure: 
Multiplane images

Tucker, Richard, and Noah Snavely. "Single-view view synthesis with multiplane images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
2020.



Challenges with neural fields

• Shape information is stored in neural network weights
• Difficult to edit

• Appearance information entangled with shape and pose

• Generalization across complex scenes still work in progress


