Learning 3D reconstruction In
underconstrained settings



2.5D vs 3D

e 2.5D: Reconstruct only the visible pixels
* 3D: Reconstruct full 3D shapes



Estimating depth from a single image

* Why is this even possible?

PR, oy |
' WL L b=
B [ ShL A
' STy el
: el
) UL %
| i ol

| TR |

. N RS
Y|
~ e
i
I

B Lr . o




Estimating depth from a single image

* Why is this even possible?

Vanishing lines indicate
plane orientations




Estimating depth from a single image

* Why is this even possible?

Apparent object height
relative to true height
indicates depth




Estimating depth from a single image

* Why is this even possible?

Occlusion indicates depth
ordering




Estimating depth from a single image
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Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. David Eigen, Christian Puhrsch, Rob Fergus. In NIPS,
2014



Metric depth is a bad target




Metric depth is a bad target

* Only relative depths matter
* Only Iogarithmic scales matter

D(y,y") = — Z (log yi — logy;) — (log y; —logy;))’
7-]

Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. David Eigen, Christian Puhrsch, Rob Fergus. In NIPS,
2014



Depth estimation today

* MegaDepth, learnt from large SfM models

Parthenon, Athens Florence Cathedral, Florence  United States Capitol, D.C.



Dy o D D b

O, OO~ O~O- DD

R0 Z020LRRROR R B ®

> QOZ0EAEOBEEEER08 03OR030FOR

IRTOTT =00 SoloSabx

© OO0 2595058030,
CLoPs 2006

Q &

©
e

© P2~ OXO
030, 2R3
RO DO

Humans perceive surface normals, not just depth,
through a combination of various pictorial cues

Slide credit: Jitendra Malik

Surface perception in pictures. Koenderink, van Doorn and Kappers, 1992



Estimating normals from a single image

(a) Input
(b) Detections

(c) Transfer

(d) Final Result

Data-Driven 3D Primitives for Single Image Understanding. David F. Fouhey, Abhinav Gupta, Martial Hebert. In ICCV 2013.



Estimating normals from a single image




Estimating normals from a single image

CNN Architecture
Input (1): 1 : ' Output:
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Marr Revisited: 2D-3D Alignment via Surface Normal Prediction. Aayush Bansal, Bryan Russell, Abhinav Gupta. In CVPR, 2016



Estimating normals from a single image




2.5D vs 3D prediction

* Predicting depth / surface normals for every pixel is not full
reconstruction

e “2.5D reconstruction”
* Does not contain parts of the scene that are hidden from view

e Can we do full 3D reconstruction?

e Simpler situation: can we do full 3D reconstruction of isolated
objects?



Shapenet




Reconstructing 3D shapes from images using
machine learning

* Input:
* Single image or multiple images of the same object

* Output:
* 3D shape

* Representation?



Representation of 3D shapes

* Voxel grids
* Discretize volume into grid cells
* |dentify cells that are occupied by object

* Advantages:
* Easy representation for ML: analog of pixels

* Disadvantages:
 Memory-inefficient
 Difficult to capture surface



Architectures for generating voxel grids

Volume Generator
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Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction." European conference on computer vision. Springer, Cham, 2016.

Yan, Xinchen, et al. "Perspective transformer nets: Learning single-view 3d object reconstruction without 3d
supervision." Advances in Neural Information Processing Systems. 2016.



Representation of 3D shapes

* Point clouds
* Each point lies on surface

* Advantages:

J
 Common representation produced by
sensors (e.g. LIiDAR) -

* Sparse, so memory efficient

* Disadvantages:
 Difficult output to predict: sets
 Difficult to extract surface



Architecture for generating point clouds

* Not an established answer

* One possibility: cloud of points = samples from an underlying
distribution

* Generative modeling

z~ N(0,I) \

Fan, Haogiang, Hao Su, and Leonidas J. Guibas. "A point set generation network for 3d object reconstruction from a
single image." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017 .

(X1, Y1, Z;)




Representation of 3D shapes

e Meshes

* Advantages
 Common in graphics
» Surfaces are triangles in the mesh
» Sparse representation: memory efficient
* Can easily encode color, texture, surface normals

* Disadvantages
* Extremely difficult to predict: graph



Architecture for producing meshes

e Assume connectivity and faces are the same as that of a sphere
* Move only vertices
e Cannot change topology of objects

Wang, Nanyang, et al. "Pixel2mesh: Generating 3d mesh models from single rgb images." Proceedings of the
European Conference on Computer Vision (ECCV). 2018.



Where do we get ground truth?

sharemer |MAGENET

# Instances / class 50 - 8000 1300

* Models created by 3D artists
* Laser scans
e Structure-from-motion



Challenges with single view 3D reconstruction

 Clear evidence that SVR networks are mostly doing retrieval

GT Predicted

AtlasNet (light green, 0.38) OGN (green, 0.46) Matryoshka Networks (dark green,
0.47) Clustering (light blue, 0.46) Retrieval (dark blue, 0.57))

Tatarchenko, Maxim, et al. "What do single-view 3d reconstruction networks learn?." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019.



Supervision?

* Fully supervised [1]

* Supervised with multiple views from known cameras [2]
* Predict shape from one image
* Project it to other views
* Ensure photometric consistency

e Supervised with multiple views from unknown cameras [3]
* Also jointly learn to predict camera pose

. Choy, Christopher B., et al. "3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction." European conference on computer vision. Springer, Cham, 2016.

. Yan, Xinchen, et al. "Perspective transformer nets: Learning single-view 3d object reconstruction without 3d
supervision." Advances in Neural Information Processing Systems. 2016.

. Tulsiani, Shubham, et al. "Multi-view supervision for single-view reconstruction via differentiable ray
consistency." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



3D reconstruction with limited ground truth
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Kanazawa, Angjoo, et al. "Learning category-specific mesh reconstruction from image collections." Proceedings of the
European Conference on Computer Vision (ECCV). 2018.



3D reconstruction with limited ground truth
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Ye, Yufei, Shubham Tulsiani, and Abhinav Gupta. "Shelf-Supervised Mesh Prediction in the Wild." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Neural representations of shape



Shape representations

(a) Voxel

* Easyto
produce

* Very
expensive to
store

e Limited
resolution



Implicit vs explicit equations

* Explicit representations of a curve

cy=f@)

* Implicit representation of a curve
* f(x,y) =0



Implicit representations of 3D shape

* Shape can be represented by the level sets of a function f: R> - R

* Occupancy:
* f(x,vy,z) is the probability (x, y, z) is inside the object
e Surfaceis given by f(x,y,z) = 0.5

* Signed distance fields
* f(x,vy,z) is the signed distance of (x, y, z) from the surface
e Sign is positive for points inside, negative for points outside
e Surfaceis given by f(x,y,z) =0



Neural implicit representations

G i Teb Decision
* Traditionally f is tabular array v otiigln
° = surface
« SDF >0
* But can approximate with a @ SDF<0°

neural network

(©)
Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape
representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.



Neural Implicit shapes

R Decision
__ boundary
e  of implicit

L i .suface

e SDF >0
e o .,‘

o L ]
@ SDF <0

(©)
Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape
representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2019.



Representation of 3D shapes

* Implicit shapes

* A shape is a function that takes (x, y, z) as input and produces as

output
* Boolean on whether itis inside shape or not
e Real value indicating distance from surface (”signed distance functions”)

* This function can be a neural network
* Thus each shape is a neural network
e Can additionally take e.g. feature vector as input

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape
representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2019.



Shape representations

(a) Voxel

* Easyto
produce

* Very
expensive to
store

e Limited
resolution



Rendering with an implicit field

If true SDF, then can perform
much faster — Sphere tracing




Generalization with neural fields

* Each neural field captures a particular shape
* Shape is encoded in the weights of the neural network

* How to generalize to new shapes?
* Latent codes
* Transfer learning



Implicit fields with latent codes

(X,y,2) SDF Code SDF

(x,y,2)
(a) Single Shape DeepSDF (b) Coded Shape DeepSDF




Producing latent codes for input shapes

Input Output em— Output
\ Code / /

-)

/ \ Codes \

(a) Auto-encoder (b) Auto-decoder




Fitting an implicit field

* Occupancy
» Essentially a binary classification problem
* Sample points, label them as inside or outside the surface

* SDF

» Essentially a regression problem
* Sample points, label them with true signed distance

* In both cases, need watertight meshes to compute



Fitting implicit fields from point clouds

* Most 3D data comes in the form of point clouds
* Watertight meshes / ground truth SDFs generally hard to acquire
* How to train with point clouds?

* One approach: assume point clouds are sampled from underlying
distribution

* Thus shape = generative model!



Fitting implicit fields from point clouds

B High-density area

Cai, Ruojin, et al. "Learning gradient fields for shape generation." European Conference on Computer Vision. Springer,
Cham, 2020.



Representing high frequency details

e Standard neural networks use RelLU as activation
* So they approximate functions with piecewise linear functions
e Bad idea for high-frequency signals

« Common in images, textured 3D surfaces etc
* Need lots and lots of pieces!



Representing high frequency details — Fourier
features

v = (z,v, 2)

v(v) = [a1 cos(27bi v), a1 sin(27bi v), ..., am cos(2rb,, V), am, sin(27b,, v)]

* Instead of f(v), do f(y(v))

i I

Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." arXiv
preprint arXiv:2006.10739 (2020).



Representing high frequency details — Fourier
features
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(a) Coordinate-based MLP (b) Image regression  (c) 3D shape regression  (d) MRI reconstruction  (e) Inverse rendering
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Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." arXiv
preprint arXiv:2006.10739 (2020).



Representing high frequency details - SIREN

* Instead of RelLU activations use sinusoidal activation

e Side-effect — all derivatives exist and are themselves SIREN models
* Allows to model both signal and derivative



Representing high frequency details

Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." Advances in Neural
Information Processing Systems 33 (2020).



Scene representations and detail — hybrid
representations

e Use a voxelized feature volume
* For each 3D point, index into feature volume with interpolation

II'

* Location-dependent “latent code”!

* Use MLP to decode latent code into occupancy

Tz 3D Locatlon p
Trilinear

Interpolation

Features 11
(P, X)
_>
10

Peng, Songyou, et al. "Convolutional occupancy networks." European /’IJ 3D Feature Volume
Conference on Computer Vision. Springer, Cham, 2020.




Scene representations and detail — hybrid

representations

e Challenge: might need many many voxels
* With multiple spatial resolutions

* Once again memory constraints

* |dea: maintain a smaller hash table of features
* Hash voxel coordinates

Mdaller, Thomas, et al. "Instant neural graphics
primitives with a multiresolution hash
encoding." arXiv preprint arXiv:2201.05989 (2022).
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Generalizing neural fields through transfer
learning

* Use meta-learning framework
* Learn initialization for network 6,

* In each training iteration
e Sample a shape
* Perform SGD steps to update parameters to 6, + A6
* Backpropagate final loss to update 6,

* Compared to latent code approach, allows greater fidelity/cheaper
networks since new shapes can use different weights

Sitzmann, Vincent, et al. "Metasdf: Meta-learning signed distance functions." arXiv preprint arXiv:2006.09662 (2020).



Using implicit fields for 3D reconstruction

Input 3D-R2N2 PSGN Pix2Mesh AtlasNet Ours




From single objects to scenes — problems
with distance fields

* Signed distance fields no longer meaningful
* Unsigned distance fields meaningful but hard to analyze

* One approach: ray distance
* For each point on the ray, distance to nearest intersection of the ray
* But dependent on view

(a) Image with ray center (b) Third person 3D views with the red ray and nearest points

Kulkarni, Nilesh, Justin Johnson, and David F. Fouhey. "What's Behind the Couch? Directed Ray Distance Functions (DRDF) for 3D Scene Reconstruction." arXiv preprint
arXiv:2112.04481 (2021).



Neural fields of radiance



Radiance

* Pixels measure radiance

| This pixel
Measures radiance in
this direction



* Radiance field c(x, d)
Radiance fields * Also have density g(x) : where are the

surfaces?

N\

c(x,d)

\ This pixel
Measures this radiance
value



Volume rendering with radiance fields

* Pixels measure radiance

r(t) =o+td




Volume rendering with radiance fields

Integral along ray

Observed color @ = ma(r(t))c(r(t) ,d)dt

Soft visibility

T(t) = expv(— /t t a(r(s))ds)

n




Neural radiance fields

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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(a) (b) (c) (d)

Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." European conference
on computer vision. Springer, Cham, 2020.



Connections to classical algorithms: Space
carving




Connections to classical algorithms: Space
carving




Leveraging classical 3D reconstruction

Depth-supervised NeRF: Fewer Views and Faster Training for Free

Kangle Deng! Andrew Liu? Jun-Yan Zhu! Deva Ramanan'-?
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Generalizing neural radiance fields across
scenes

* Key idea: have neural network explicitly look up other views instead
of storing radiance

[ "] Source view y
i Target view '
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()
NM—c f R g%
> 2 2 a
> g Y o, =>
=k Transformer
JINM—c¢3 fo3 o e o
LI | ) PO ray distance

A m] I:I I:l:: color ¢ Rendering Loss >
oL”
N -
) density feature f it
LI densty e, |-

colorpreq colorgt 2

%% image color viewing direction

SRR image feature

Wang, Qiangian, et al. "lbrnet: Learning multi-view image-based rendering." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Generalizing neural radiance fields across
scenes

* Key idea: have neural network explicitly look up other views instead
of storing radiance

\ f Volume Rendering
Input View |14

= (z,d) > — (RGBo) /l\ \/\

e
. _|—
J,

/Vx’/
Ray Distance
Ai\
z X

@ W(na) 7
CNN Encoder Target View Rendering Loss

‘ " M-zt

2

Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.



Neural fields of semantics

e Can use neural fields to store not just color but also semantics
* Useful way to encode cross-view consistency of recognition
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Kundu, Abhijit, et al. "Panoptic Neural Fields: A Semantic Object-Aware Neural Scene Representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022.



Other representations of 3D structure:
Multiplane images
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Tucker, Richard, and Noah Snavely. "Single-view view synthesis with multiplane images." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020.



Challenges with neural fields

e Shape information is stored in neural network weights
 Difficult to edit

* Appearance information entangled with shape and pose

* Generalization across complex scenes still work in progress



