
Robust Estimation w/
RANSAC

• Estimating E relies on correspondences
• What if correspondences are incorrect?
• Fitting: find the parameters of a model that best fit the data
• Other examples:

• least squares linear regression

Dealing with outliers

Example: Fitting lines

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

y = mx + b

(yi, xi)

Linear regression

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

residual error

Outliers in linear regression

Problem: Fit a line to these datapoints Least squares fit

Outliers

Outliers outliers

inliers

Outliers

• Grossly incorrect
• Dominate objective
• Lead to incorrect solutions
• Must be eliminated
• But how do we know which data points are outliers?

More general problem setup

• Given
• A noisy dataset 𝐷 = 𝑝!, 𝑝", … , 𝑝# with some completely incorrect outliers

• Example 1: Line fitting: { 𝑥!, 𝑦! , … , 𝑥", 𝑦" }
• Example 2: Fundamental matrix: { 𝑝⃗!, 𝑞! , 𝑝#, 𝑞# , … , 𝑝$, 𝑞$ }

• A set of parameters 𝜃 that need to be fitted
• Line fitting: 𝜃 = (𝑚, 𝑏)
• F estimation 𝜃 = 𝐹, ||𝑓|| = 1

• A cost function 𝐶 𝑝, 𝜃
• Line fitting: 𝐶 𝑥, 𝑦 , 𝑚, 𝑏 = ||𝑦 − 𝑚𝑥 + 𝑏 ||#

• F estimation: 𝐶 𝑝⃗, 𝑞⃗ , 𝐹 = 𝑝%𝐹𝑞⃗(Reprojection error)

• Find 𝜃

Anna Karenina principle

• “Happy families are all alike; every unhappy family is unhappy in its
own way.” – Leo Tolstoy, Anna Karenina
• Inliers bound to agree with each other
• Outliers are all outliers in different ways

• So assume outliers will not all point towards same hypothesis

• More precise assumption:
• Outliers either <50%
• Or noisy points don’t all agree

Approach

• Search through all possible hypotheses
• E.g., all possible lines

• For every point count number of potential inliers
• Points that agree with the line

• Find line with maximum # of inliers
• Since outliers don’t agree with each other, they won’t all lie on the same line
• So the points on this line must be true inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

Inliers: 20

Which hypotheses?

• Sample hypotheses randomly?
• Might sample useless hypotheses that doesn’t fit any data

• Only want hypotheses that fit at least some data
• Idea: sample minimum points to fit hypothesis
• This yields candidate hypothesis

RANSAC (Random Sample Consensus)

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

d

RANSAC

6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

d

RANSAC

14=IN
Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Problem setup (again)

• Given
• A dataset 𝐷 = 𝑝!, 𝑝", … , 𝑝#

• Example 1: Line fitting: { 𝑥!, 𝑦! , … , 𝑥", 𝑦" }
• Example 2: Fundamental matrix: { 𝑝⃗!, 𝑞! , 𝑝#, 𝑞# , … , 𝑝$, 𝑞$ }

• A set of parameters 𝜃 that need to be fitted
• Line fitting: 𝜃 = (𝑚, 𝑏)
• F estimation 𝜃 = 𝐹, ||𝑓|| = 1

• A cost function 𝐶 𝑝, 𝜃
• Line fitting: 𝐶 𝑥, 𝑦 , 𝑚, 𝑏 = ||𝑦 − 𝑚𝑥 + 𝑏 ||#

• F estimation: 𝐶 𝑝⃗, 𝑞⃗ , 𝐹 = 𝑝%𝐹𝑞⃗(Reprojection error)
• A minimum number needed k

• Line fitting: 2
• F estimation: 8

RANSAC (RAndom SAmple Consensus)

• Repeat:
• Sample minimum number of points k to fit hypothesis
• Fit hypothesis
• Count number of inliers in entire dataset

• Choose hypothesis with most number of inliers
• Re-update hypothesis with estimated inliers

RANSAC - hyperparameters
• Inlier threshold related to the amount of noise we

expect in inliers
• Often model noise as Gaussian with some standard

deviation (e.g., 3 pixels)

• Number of rounds related to the percentage of
outliers we expect, and the probability of success
we’d like to guarantee

RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data point, best hypothesis

wins

• There are many other types of voting schemes
• E.g., Hough transforms…

The correspondence
problem

Till now

• Geometry of image formation
• Stereo reconstruction

• Given 3D à 2D correspondence, find K, R, t
• Given 2 images, correspondence, K, R, t, find 3D points
• Given 2 images, correspondence, find F, E, R, t, 3D points

Till now

• Geometry of image formation
• Stereo reconstruction

• Given 3D à 2D correspondence, find K, R, t
• Given 2 images, correspondence, K, R, t, find 3D points
• Given 2 images, correspondence, find F, E, R, t, 3D points

Correspondence can be
challenging

Fei-Fei Li

Harder case

by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?

NASA Mars Rover images
with SIFT feature matches

Answer below (look for tiny colored squares…)

The correspondence problem

The aperture problem

• When viewed from a small “aperture”, correspondence is ambiguous

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!

The aperture problem

• Some local neighborhoods are ambiguous

The aperture problem

Sparse vs dense correspondence
• Sparse correspondence: produce a few, high confidence

matches
• Good enough for estimating pose or relationship between cameras

• Dense correspondence: try to match every pixel
• Needed if we want 3D location of every pixel (e.g., stereo)

Sparse correspondences

• For many applications, a few good correspondences suffice
• Camera calibration
• Estimating essential matrix
• Reconstructing a sparse cloud of 3D points

• Detect points that will produce good correspondences
• Match detected points from both images

Sparse correspondence pipeline

Interest
point

detector

Interest
point

detector

Feature
descriptor

Feature
descriptor

Feature
matching

Characteristics of good feature
points

• Repeatability / invariance
• The same feature point can be found in several images despite

geometric and photometric transformations

• Saliency / distinctiveness
• Each feature point is distinctive
• Fewer ”false” matches / less ambiguity

Slide credit: Kristen Graumanc

Goal: repeatability
• We want to detect (at least some of) the same points in both images.

• Yet we have to be able to run the detection procedure independently per
image.

No chance to find true matches!

Slide credit: Kristen Graumanc

Goal: distinctiveness

• The feature point should be distinctive enough that it is easy to match
• Should at least be distinctive from other patches nearby

????

Slide credit: Kristen Graumanc

Harris corner detector

• Let us tackle second goal
• Main idea: Translating patch should cause large differences
• An example of an interest point detector

Matching feature points
We know how to detect good points
Next question: How to match them?

Two interrelated questions:
1. How do we describe each feature point?
2. How do we match descriptions?

?

Feature descriptor

𝑥! 𝑥" 𝑦! 𝑦"

Feature matching

• Measure the distance between (or similarity between) every pair of
descriptors

𝒚𝟏 𝒚𝟐

𝒙𝟏 𝑑(𝑥!, 𝑦!) 𝑑(𝑥!, 𝑦")

𝒙𝟐 𝑑(𝑥", 𝑦!) 𝑑(𝑥", 𝑦")

Invariance vs. discriminability

• Invariance:
• Distance between descriptors should be small even if image is transformed

• Discriminability:
• Descriptor should be highly unique for each point (far away from other points

in the image)

Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change

Invariance

• Most feature descriptors are designed to be invariant to
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transformations (some are fully affine invariant)
• Limited illumination/contrast changes

Depth
Discontinuity

Normal
discontinuit

y

Albedo Edge

Shadow

Better representation
than color: Edges

Towards a better feature descriptor

• Match pattern of edges
• Edge orientation – clue to shape

• Be resilient to small deformations
• Deformations might move pixels around, but slightly
• Deformations might change edge orientations, but slightly

Invariance to deformation by quantization

37 42

Between 30 and 45

Invariance to deformation by quantization

g(✓) =

8
>>>><

>>>>:

0 if 0 < ✓ < 2⇡/N
1 if 2⇡/N < ✓ < 4⇡/N
2 if 4⇡/N < ✓ < 6⇡/N

. . .
N � 1 if 2(N � 1)⇡/N

Spatial invariance by histograms

2 blue balls, one red box

balls boxes

2

1

T. Tuytelaars, B. Leibe

Rotation Invariance by Orientation
Normalization
• Compute orientation histogram
• Select dominant orientation
• Normalize: rotate to fixed orientation

0 2p

[Lowe, SIFT, 1999]

The SIFT descriptor

SIFT – Lowe IJCV 2004

Basic idea:
• DoG for scale-space feature detection
• Take 16x16 square window around detected feature

• Compute gradient orientation for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram

SIFT descriptor
Create histogram

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

SIFT vector formation
• Computed on rotated and scaled version of window

according to computed orientation & scale
• resample the window

• Based on gradients weighted by a Gaussian

Properties of SIFT
Extraordinarily robust matching technique

• Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available:

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_imple
mentations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Summary
• Keypoint detection: repeatable

and distinctive
• Corners, blobs, stable regions
• Harris, DoG

• Descriptors: robust and selective
• spatial histograms of orientation
• SIFT and variants are typically good

for stitching and recognition
• But, need not stick to one

Learning-based correspondence

Choy, Christopher B., et al. "Universal correspondence network." Proceedings of the 30th International Conference on
Neural Information Processing Systems. 2016.

Learning interest points

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection
and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.

Learning descriptors without supervision

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection
and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.

Query point

Ground truth epipolar line

Predicted correspondence

Epipolar loss

Cycle consistency loss

Epipolar constraint à Epipolar loss

Wang, Qianqian, et al. "Learning feature descriptors using camera pose supervision." European Conference on
Computer Vision. Springer, Cham, 2020.

Evaluation on relative pose estimation

10

30

50

70

90

Easy Moderate Hard

Rotation accuracy on MegaDepth
Ac

cu
ra

cy
 [%

]

0

10

20

30

40

Easy Moderate Hard

Translation accuracy on MegaDepth

SIFT SuperPoint D2-Net ContextDesc R2D2 CAPS (SIFT kp.) CAPS (SuperPoint kp.)

Ac
cu

ra
cy

 [%
]

The structure from motion pipeline

• Image matching
• Estimate correspondences, use epipolar geometry + RANSAC to clean

correspondences

• Incremental 3D reconstruction
• Reconstruct keypoints from a pair of images
• Add images in, do triangulation to reconstruct more 3D points

• Bundle adjustment
• Take all 3D points and all cameras and minimize reprojection error

• Lots of details; decades of work in getting this right!

Image matching

• Given a collection of images
• Extract interest points and descriptors (e.g., SIFT)
• Look at image pairs and use correspondences to:

• Decide if image pair has some overlap
• Estimate E (or F) (or a homography H if no translation)
• Use RANSAC for outlier sensitivity

• Obtain:
• Verified image pairs
• Verified inlier correspondences
• Transformation between cameras (relative pose, i.e., R and t)

Scene graph

Incremental 3D Reconstruction

• Given scene graph
• Pick initial pair

• Use inlier correspondences + known relative pose for triangulation
• Obtain initial set of 3D points, say S

• Repeat:
• Pick an unregistered image
• Use known 3D points S and their corresponding 2D location to calibrate (Use

RANSAC)
• Use other correspondences between registered images to grow S
• Bundle adjustment: minimize reprojection error for all points and cameras

• Output: 3D point cloud S and camera pose for every registered image

Bundle adjustment

<latexit sha1_base64="sDRW3fW3jR3tJFAAjFyEiw0w5CI=">AAACbXicbVFNbxMxEPUuhbbha1vUA1AhiwiRSiXarRDlWMGFY5BIGykOK6/jTay1vSt7tiLa+sYv7I2/0Ev/As6H2tAykqU3b+aNx89ZJYWFOP4ThA82Hj7a3NpuPX7y9NnzaGf31Ja1YbzPSlmaQUYtl0LzPgiQfFAZTlUm+VlWfJ3Xz865saLUP2BW8ZGiEy1ywSh4Ko1+EyV02pCGKArTLG96LmXEHeJbZuDSgjiHia1V2rDDwkMzLT0sHJE8hw4mF5hUorM+w09Y0x/gDzf5L7eUXvw8IkZMpnCQRu24Gy8C3wfJCrTRKnppdEnGJasV18AktXaYxBWMGmpAMMldi9SWV5QVdMKHHmqquB01C7ccfueZMc5L448GvGDXFQ1V1s5U5jvnG9u7tTn5v9qwhvzzqBG6qoFrtrworyWGEs+tx2NhOAM584AyI/yumE2poQz8B7W8CcndJ98Hp0fd5FM3+f6xffJlZccWeo3eog5K0DE6Qd9QD/URQ1dBFLwMXgXX4V64H75ZtobBSvMC/RPh+7/yj70D</latexit>

min
{Pc},{Xk}

X

c,k

⇢ck
�
k⇡(Pc,Xk)� xckk2

�

Cameras 3D points Perspective
projection

2D Image
location

Outlier
downweighting

The structure-from-motion pipeline

https://colmap.github.io

