
Addressing the data challenge:
Transfer learning and semi-

supervised learning



The data challenge

• Fundamentally, neural networks need a lot of data
• Why?
• Lots of parameters
• Deeper, bigger models are better in CV, and they all have many more 

parameters

• Large datasets are problematic
• Expensive to collect
• Expensive to curate
• Expensive to label
• Associated issues of bias



The “fundamental law” of neural networks

• Neural networks must be trained on a large dataset
• If not enough labeled data for target task, then what?
• Unlabeled data from target domain: Self-supervised learning
• Labeled + Unlabeled data for target task: Semi-supervised learning
• Labeled data from a related problem domain: Few-shot / transfer learning



Learning from unlabeled data: Self-supervised 
learning
• Two classes of approaches

• Pretext-based learning
• Design a “pretext” task that leads to good features

• Contrastive learning
• Spread images out in feature space



Classical unsupervised learning

• PCA (Principal Components Analysis)
• Reduces dimensionality
• But is a linear approach



Pretext tasks

• Transform input, task network with predicting transformation
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Pretext tasks

• Remove data, then task network with predicting it



Pretext tasks

• Use some source with additional data
• E.g. videos



1. Collect 
videos

2. Segment 
using motion

3. Train 
ConvNet

Pathak, Deepak, et al. "Learning Features by Watching 
Objects Move." CVPR. Vol. 1. No. 2. 2017.
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Ego-motion ↔ vision: view prediction

After moving:

Slide credit: Dinesh Jayaraman



Equivariant embedding 
organized by ego-motions

Pairs of frames related by 
similar ego-motion should 
be related by same feature 

transformation
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Approach idea: Ego-motion equivariance

time →

m
ot

or
 si

gn
al

Training data
Unlabeled video + 

motor signals

Slide credit: Dinesh Jayaraman



Self-supervision from multimodal data

Owens et al, CVPR 2016



Comparison

• Train on ImageNet w/o labels
• Use features to train linear 

classifier on scene classification 
(Places205)
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Contrastive learning

• Training for classification is great!
• However, no class labels L
• Idea: let data define the classes



DeepCluster

Use pseudo-labels to 
produce representation

Use representation to 
cluster dataset



Instance Discrimination

• Simpler idea: let each image (+ 
data augmentations) be its own 
class
• Challenge: number of classes too 

many!



SimCLR

• Sample a batch of images 
𝑥!, … , 𝑥"
• Augment each to produce 
𝑥"#!, … , 𝑥$"

• Loss = −log ∑%
&!" #$,#$&'

∑()$ &
!" #(,#$



Why does this work?

• Data augmentation?



Curioser and curioser

Exponential moving average



Why does this work

• Simple mechanism:
• Spread images out in feature 

space while ensuring invariance 
to augmentation

• Current techniques appear to be 
as good as supervised training
• But need much longer training, 

large datasets



Classical unsupervised learning

• Unsupervised learning is old
• Even with handcrafted features, some feature transformations are 

necessary
• E.g.: spurious correlations between features cause problems doing 

learning
• If a car is always seen on a road, then learning algorithm may latch on to the 

road



Classical unsupervised learning

• Typically want features to be independent and uncorrelated
• What do uncorrelated features look like?
• If each feature dimension is normally distributed, and features are all 

independent
• Multivariate Gaussian with identity covariance!



Classical unsupervised learning

• Whitening
• Linear transformation to make the data have identity covariance
• Closely related to LDA (Linear discriminant analysis), one of the earliest 

classification algorithm

Whiten



Classical unsupervised learning

• But classical whitening is limited by linear transforms
• Will remove only first order correlations

Whiten



Deep unsupervised learning

• Key question: can we get a deep network to remove all correlations?
• Has been the subject of study for many years
• Contrastive learning turns out to be very good at this!



Semi-supervised learning

• What if we have both labeled and unlabeled data?
• E.g., dataset only partially labeled



Semi-supervised learning I – Self-training / 
Psuedo-labeling

Train 
model

Pseudo-
label



Semi-supervised learning II – Entropy 
minimization
• Loss function on labeled examples: standard negative log likelihood
• Loss function on unlabeled examples: entropy
• 𝐻 𝑝 = −∑! 𝑝! log 𝑝!
• Entropy is high when probabilities are uniform
• Minimize entropy à encourage classifier to be more confident



Semi-supervised learning III – Consistency 
regularization
• Loss on unlabeled images: consistency between predictions on 

augmented versions



Semi-supervised learning IV - FixMatch



Semi-supervised learning V – S4L

• Simple idea: use self-supervised loss on unlabeled data
• “Self-supervision for semi—upervised learning”



Limitations of semi-supervised learning

• Still needs at least 10s of examples per class
• Need unlabeled data



Few-shot learning



The challenge: Intra-class variation



Philippine Tarsier

Philippine Tarsier

Mouse lemur

Beaver

“Train set” “Test set”



Key cue: shared modes of variation



Bird, grey color, long 
beak, long legs, 

black markings on 
head,…

How do humans do this?

More invariant representations Inductive biases during 
learning



Better representations: metric learning

True class boundary



Better representations: metric learning

“One-shot” class boundary



Metric learning

• Pull same-class pairs closer and different-class pairs apart
• Contrastive loss (DrLIM)
• = 𝑑 𝑥, 𝑥" # 𝑖𝑓 𝑦 = 𝑦"

• = max 0,𝑚 − 𝑑 𝑥, 𝑥" # 𝑖𝑓 𝑦 ≠ 𝑦′

• Triplet loss
• = max(𝑑 𝑥, 𝑥$ − 𝑑 𝑥, 𝑥% + 𝛾, 0)

Dimensionality reduction by learning an invariant mapping. Raia Hadsell, Sumit Chopra, Yann LeCun.
Computer Vision and Pattern Recognition (CVPR), 2006



Meta-learning

• Given:

• Produce:

• Idea: Make this a learnable function!

Small training set
(few training examples)



Meta-learning

Strain

Stest

h

m = A(Strain)

p̂ = m(x)

!𝑝



Meta-learning
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Meta-learning: training
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An army of meta-learners

• Vinyals, Oriol, et al. "Matching networks for one shot learning." NIPS. 2016.

• Ravi, Sachin, and Hugo Larochelle. "Optimization as a model for few-shot learning." ICLR, 2017.

• Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." NIPS. 2017.

• Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep 
networks." ICML. 2017.



Meta-learning : MAML

• Given training set 𝑆, query example 𝑞, need function ℎ(𝑆, 𝑞 ;𝒘)
• Idea:
• 𝒘 is initialization of neural network
• ℎ does a few SGD steps using S and then classifies q
• Backpropagating through h is difficult but can be done



Meta-learning: Prototypical Networks
�

�

�



Meta-learning: FEAT



Meta-learning: FRN



Transfer vs self-supervision vs few-shot on 
new domains
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A magic ingredient

Source domain 
labeled data

Source 
classifier

“Meaningless” 
pseudo-labels

Target domain 
feature extractor

Step 1: Train 
classifier in source 
domains

Step 2: Pseudo-
label target domain 
unlabeled data

Step 3:  Use pseudo-labels + 
self-supervision to train target 
domain features

Target domain 
unlabeled data



The magic of self-training in 3 steps

1. Pre-train convnet on source domain (ImageNet)

2. Use pre-trained convnet on unlabeled data from target domain to 
get pseudolabels

3. Use pseudo-labels to train target domain representation (+SimCLR
as potential aux. loss)

Self Training for Adapting Representations To Unseen Problems (under 
review)



STARTUP – what does it do?



STARTUP
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Why does STARTUP work?

• Induced grouping can be still meaningful in the target domain
• STARTUP performance correlated with this

• Training with induced grouping forces network to learn domain-
specific features

Phoo, Cheng Perng, and Bharath Hariharan. "Self-training for Few-shot Transfer Across Extreme Task Differences." ICLR, 2021.


