Human pose estimation



The task

* Mark joint locations for person
* Nose

* Right/left shoulder

* Right/left elbow

* Right/left hip




Two versions of task

* Assume people have been * Tabula rasa without detections
detected e Challenge: no idea of scale or
* Rough bounding box given number
* Key info available: * Possible opportunity: use
* scale keypoint estimates to improve
* only 1 location per joint detections

* Pros: disentangles detection and * Pros: realistic

pose estimation * Cons: conflates detection and

e Cons: unrealistic pose estimation



Pose estimation given detection



Evaluation metric - given detection

* Evaluate every keypoint separately
* For each person, check if keypoint is correct

* Compure fraction of people for which keypoint is correct: PCK
(Probability of Correct Keypoint)



Evaluation metric - given detection

R o - ) '\—‘ = 14
A ¥ o | (P ¢ >
AL A AR -« { -
t’, \ e Moy —




R-CNN: Regions with CNN features

aeroplane? no.

person? yes.

tvmonitor? no.

Input Extract region Compute CNN Classify regions
image  proposals (~¥2k / image) features (linear SVM)

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
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Bounding-box regression

W Aw X w+w
e ———————
(x, y)
h (Ax X w+x, -
' Ay X h+h) :
Ah X h+h
original
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Strategy 1: Regression

Right elbow x: 0.45
Right elbow y: 0.12
Left elbow x: 0.98

Regression

targets relative
to bounding box

DeepPose: Human Pose Estimation via Deep Neural Networks. Alexander Toshev and Christian Szegedy. In CVPR, 2014.



Strategy 1: Regression

* Assumes global object features has enough information for accurate
localization

* Localization info missing due to subsampling?

e Solution: Refinement!

Initial stage Stage s
220 x 220
-
t % g g 8 !! - B B
%ehaéaéaée >8> 3->§->§->§->§-> >
1 bl 1 Il

e DNN-based refiner

DNN-based regressor

send refined values
to next stage

DeepPose: Human Pose Estimation via Deep Neural Networks. Alexander Toshev and Christian Szegedy. In CVPR, 2014.



Strategy 1: Regression

Minimizer of

(| X — zpredll”)

e Multimodal distributions?

p(x)




Strategy 2: Heatmaps




Strategy 2: Heatmaps - Training

* Each keypoint is a separate binary heatmap

* Keypoint location is positive, all other locations are negative. Options:

* Softmax over all locations in an image
eS(xy)
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* p(x,y) =

e Sigmoid at each location

1
¢ p(x)y) — 1+e—s(x'y)




Strategy 2: Heatmaps

e Still have the resolution issue

* Same solutions
* Dilation?
* Multiple layers?
* Multiple image scales?



Heatmaps + Regression

* Use heatmap to predict coarse
location

* Also predict at each coarse
location an offset (Ax, Ay).

Papandreou, George, et al. "Towards accurate multi-person pose estimation in the wild." CVPR. Vol. 3. No. 4. 2017.



Are all keypoints independent given the image?

- " - o

Equally likely locations for
right elbow

Equally likely locations for
right wrist



Are all keypoints independent given the image?




Capturing keypoint dependence!

 Structured prediction
* | is a candidate location for each keypoint

Consistency
between joints

Score from
heatmap



Are all keypoints independent?

* | is a candidate location for each keypoint

Consistency
between joints

Score from
heatmap




Joint prediction of keypoints

" = arg min F(1)
* Conditional Random Field

* But not just smoothness: ¢ is unknown!

* Needs to be learnt



Pictorial structures




Flexible Mixture of Parts
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* Y(l;, lj): Spatial features between [; and [;
* p;j: Pairwise springs between part i and part j

Articulated Human Pose Estimation with Flexible Mixtures of Parts. Yi Yang and Deva Ramanan. TPAMI 2013.

Slide credit: Yang et al



Flexible Mixture of Parts

* Learning?
e Structured SVMs

* Very large output spaces

* A scoring function that scores input-output pairs f, (:13, y)
* Predicted output is arg max of scoring function

* Loss is margin rescaled loss

Support vector machine learning for interdependent and structured output spaces. Tsochantaridis |, Hofmann T, Joachims T, Altun
Y. In ICML, 2004



Inference?

E(1) =Y si(l;)+ Z Gij (L, 1)

1" = argmin E(1)
mlﬂzsz +Z¢z‘j irl
[} = arg mm si(l;) + quw ZZ,Z

ZZ(H ) arg mm s; (1 + Z ¢ii(L;, l§t)



Iterative models

* Inference in MRFs and CRFs usually iterative and approximate
l§t+ ) arg mm si(l;) + Z¢z9 l;, l§t>

* Except trees: FMP
* Instead of learning scoring function, then approximately minimizing it

 Learn iterative inference procedure?
e Similar to autocontext/inference machines



Autocontext and Inference Machines
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Autocontext and Inference Machines

Image Image
Pose Pose Pose
estimate(t) estimate(t+1) estimate(t+2)

e Shared parameters: Inference Machines
* Unshared parameters: Autocontext

Auto-context and Its Application to High-level Vision Tasks. Zhuowen Tu. In CVPR 2008.
Learning Message-Passing Inference Machines for Structured Prediction. Stephane Ross, Daniel Munoz, Martial Hebert, J.

Andrew Bagnell. In CVPR 2011.



Iterative models

* In each iteration, beliefs of one variable are updated using current
beliefs of the others

ZZ(H ) arg mm si(l;) + Z ®ii(li, l§t

* Frame each iteration of inference as a differentiable function
* Write inference as a convolutional network

Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. Jonathan Tompson, Arjun Jain, Yann
LeCun, Christoph Bregler. In NIPS, 2014.



lterative models

* P(eye at p) = Zq P(eye at p | nose at g) P (nose at q)

* P(eye at p | nose at q) only depends on relative location of p and g
* f(p) =X w( — q) g(q) : convolution!

f=wrg
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Iterative models

Mixture of
Regression parts
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Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. Jonathan Tompson, Arjun Jain, Yann
LeCun, Christoph Bregler. In NIPS, 2014.



More iterative models

 Why only one convolution?

 Each iteration can involve multiple convolution/subsampling layers
over beliefs from previous iteration

. (b) Stage =2

..

Convolutional Pose Machines. Shih-En Wei, Varun Ramakrishna, Takeo Kanade, Yaser Sheikh. In CVPR, 2016



PCKh wrist & elbow, MPII
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Stacked Hourglass Networks

* Each refinement round has to
* Combine global information about pose
* Use global pose information to produce new precise pose estimate

* Rounds need not share parameters
* "Hourglass structure”

Stacked Hourglass Networks for Human Pose Estimation. Alejandro Newell, Kaiyu Yang, and Jia Deng. In ECCV, 2016.



Stacked hourglass networks
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Pose estimation without
detection



Evaluation metric - tabula rasa

* Algorithm detects keypoints + scores

* Match keypoint to a ground truth keypoint if d/h is less than
threshold

* Compute precision-recall curve
 Compute AP (called APK : AP Keypoint)



Two strategies

* First detect, then estimate keypoints
e Can use any of previous techniques

Similar to instance segmentation

Easy to get object level information

Hard to recover from bad detections
e.g. Mask R-CNN

* Detect keypoints, then group into people

* Need a way to group keypoints: hard problem, requires heuristics
* No simple way to have object level information



Top-down keypoint detection

ol

RolAlign
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conv>

He, Kaiming, et al. "Mask r-cnn." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.



Bottom-up keypoint detection

* Need to group keypoints. Can be really ambiguous
* |dea: detect not just keypoints but also limbs + limb orientation

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. In CVPR,
2017.
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Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. In CVPR,
2017.



Pose estimation in 3D

Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image. C. J. Taylor. In CVPR, 2000



Pose estimation in 3D

* Key idea: know relative lengths of each limb4

* Assume scaled orthographic projection
* Valid when variation in depth much smaller than depth
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Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image. C. J. Taylor. In CVPR, 2000



Pose estimation in 3D
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(w1 — us2) s(X1 — Xo)
(01 —v2) = s(¥1 —13)
A7 = (Z) — Z»)
= dZ = /12— ((u1 —u2)? + (v1 — v2)2)/52

Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image. C. J. Taylor. In CVPR, 2000



