Image classification



Image classification

* Given an image, produce a label

* Label can be:
* 0/1 or yes/no: Binary classification
* one-of-k: Multiclass classification
* 0/1 for each of k concepts: Multilabel classification



MNIST

* 2D

* 6000 examples per class

10 classes
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* 101 classes

* 10 classes

* 30 examples per class

 Strong category-specific biases
* Clean images

MNIST

1990’s 2004



PASCAL VOC

e 20 classes
* ~500 examples per class

e Clutter, occlusion, natural
scenes

MNIST Caltech 101

1990’s 2004 2007-2012



ImageNet

* 1000 classes
e ~1000 examples per class

 Mix of cluttered and clean
Images

MNIST Caltech 101

1990’s 2004

PASCAL VOC

2007-2013

2013-2017



Why is recognition hard?

Lighting




Learning

* Key idea: teach computer visual concepts by providing examples

X :Images
Y :Labels
D :Distribution over X x Y

Training S: {(wzayz) ND,Z: 17"'7n}

Set




Example

 Binary classifier “Dog” or “not Dog”
e Labels: {0, 1}
* Training set




Learning

* Key idea: teach computer visual concepts by providing examples

S={(x;,y;) ~D,i=1,...,n}

* Want to be able to estimate label y for new images x
* Want to give score s(y, x) for each possible label y, then pick highest scoring
* Want to estimate y(x)
* Want to estimate P(y|x), then pick most likely



Choosing a model class

* Will estimate a probability P(y | x)

* Any function that takes x as input and outputs probability distribution
ch: X — C|y| where C?% is a probability distribution over d classes
* Very large set of possibilities for h

* Constrain choice: Choose a family of possible functions H
* Hypothesis class



Hypothesis class |: Classical models

* Choose h to be a linear classifier over some feature space

* First extract features: z = ¢(x)

* ¢ is a fixed, hand-crafted function that converts images into features useful
for recognition: ¢: X’ - R%

* Next multiply by a weight matrix to produce class scores: s = Wz
W is unknown a priori

* Next normalize scores to a probability
 P(y = k|x) x ek
e “Softmax”



Hypothesis class |: Classical models

* h(x; W) = softmax(W¢(x))

* For different settings of W, get different hypotheses

» Hypothesis class H = {h(-; W); W € RIYI* 4}

* W are parameters: index hypotheses in hypothesis class

f3(s)

= softmax(s)



Choice of feature extractor?

* SIFT, HOG, GIST, BOW....
* The rest of the pipeline is very simple: linear function + softmax

* So heavy lifting must be done by feature extractor

e But how do we design feature extractor?



SIFT

 SIFT itself a series of simple, fixed steps
* Make some of them parametric?

Compute

Compute magnitude Quantize

Histogram

gradients and and bin

orientation




Hypothesis class 2: Multilayer perceptrons

* Key idea: build complex functions by composing many simple functions

_ g(x) = _ g(x) = _ f3(s)
f(X)_WX » » f(X)_WX » » »




General recipe

* Fix hypothesis class
* hy,(x) = softmax (fs(fz (g(f1(X» W1))»W2)»W3))
* h,,(x) = softmax (Wc,b(x))
e Define loss function
* L(hy,(x;),y;) = —log py, (x;)
* Minimize average (or total) loss on the training set

mm—ZL i)

e How do we minimize?
* Why should this work?



Training: Choosing the best hypothesis

* Need to minimize an objective function.
* In general, optimization problem.
* If Lis differentiable and h is differentiable: can do gradient descent

mm—ZL i )



Training = Optimization

e Simple solution: gradient descent

m“i’n f(w)

w(t D = w® _ v F(w®)



Stochastic gradient descent

1 . .
_ - Z L(hw (i), y) Objective function
1
— - Z VwlL(hw(x;),y;) Gradient
)
wa(W) — < VWL(hW (5137,) yz) > Gradient = average of per example
’ gradients
wa(W) ~ V L(hw (.CE‘Z), yz) Stochastic gradient descent using single
B examples
‘ Z Vwl(hw(x;, ), i) Stochastic gradient descent using

minibatch



Stochastic gradient descent

 Randomly sample small subset of examples

* Compute gradient on small subset
* Unbiased estimate of true gradient

* Take step along estimated gradient



Computing derivatives
wa(W) ~ VWL(hW(xi)v yz)

* How do we compute gradient?

 Composition of functions: use chain rule
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The gradient of convnets

Backpropagation



Risk

* Given:
e Distribution D

* A hypothesis h € H
e Loss function L

* We are interested in Expected Risk:

R(h) — 4:($,y)NDL(h(‘T)7y)

* Given training set S, and a particular hypothesis h, Empirical Risk:

R(S,h) = Z L(h(z),y)

(w,y)ES




Risk
R(h) = 43(x,y)NDL(h($)ay) R( Z L

* By central limit theorem, (xay)és
G Pn R(S, h) — R(h)

* Variance proportional to 1/n

* For randomly chosen h, empirical risk is an unbiased estimator of
expected risk



Risk

* Empirical risk unbiased estimate of expected risk
* Want to minimize expected risk

* |dea: Minimize empirical risk instead

* This is the Empirical Risk Minimization Principle

R(h) =By ~pL(h(z),y)  R(S,h)= Z L(h
(a:,y)ES

h* = arg }rlxéllg R(S, h)




Generalization

R(h) — <1z(ac,y)NDL(h(x)7y) Z L

(:B y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error



Overfitting

* We are minimizing training error

e Empirical risk of chosen hypothesis no longer unbiased estimate:
* We chose hypothesis based on S

* Might have chosen h for which S is a special case
e OQverfitting:
* Minimize training error, but generalization error increases



Controlling generalization error

* Variance of empirical risk inversely proportional to size of S
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* Regularize during optimization!
* Eg. L2 regularization



Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen



Putting it all together

 Want model with least expected risk = expected loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk in training set
* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization



Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!



Loss functions and hypothesis classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R 10.1} log(1 4 e~ ¥A(=)
Negative log likelihood Multiclass classification [0, 1]% p L —log hy(z)
Hinge loss Binary Classification R N max (0,1 — yh(z))
MSE Regression R R (y — h(x))?




Multilayer perceptrons

* Key idea: build complex functions by composing simple functions

f(x) = Wx » mga(:()x,:O) » f(x) = Wx » mga(:()x,:O) » f(x) = Wx




Multilayer perceptrons

* Key idea: build complex functions by composing simple functions
e Caveat: simple functions must include non-linearities
* W(U(Vx)) = (WUV)x



Reducing capacity

256

~ 65K




Reducing capacity

°K ~ 65K




ldea 1: local connectivity

 Inputs and outputs are feature maps
* Pixels only related to nearby pixels




ldea 2: Translation invariance

* Pixels only related to nearby pixels




Local connectivity + translation invariance =
convolution
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Local connectivity + translation invariance =
convolution
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Local connectivity + translation invariance =

convolution
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Convolution as a primitive
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Invariance to distortions




Invariance to distortions

* | ¥
X |26

Image gradients Keypoint descriptor



Invariance to distortions: Pooling




Invariance to distortions: Subsampling




Convolution subsampling convolution
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Convolution subsampling convolution

* Convolution in earlier steps detects more local patterns less resilient
to distortion

* Convolution in later steps detects more global patterns more resilient
to distortion

e Subsampling allows capture of larger, more invariant patterns



Convolution with subsampling

e Subsampling = reducing resolution by dropping rows and columns

 Can be done with strided convolution
 Stride of k means output pixel every k input pixels

* Typically done without anti-aliasing, though anti-aliasing helps?

Ihttps://richzhang.github.io/antialiased-cnns/



Convolution with subsampling




Invariance to deformations




Effect of subsampling

e Same sized filters captures larger neighborhoods on lower resolution
features

* Magnitude of translations / deformations reduce with lower
resolution

* Convolution in earlier steps detects more local patterns less resilient
to deformations / translations

* Convolution in later steps detects more global patterns more resilient
to deformations / translations

e Subsampling allows capture of larger, more invariant patterns



Pooling

 Similar to convolution, but take max or average across window for
every channel

* No learnable parameters

N

A

h Max / average pooling h

A
v




Global Average Pooling

» Special case: take average across entire input space for every channel
» Useful for converting feature maps to vector of image features

g ¢

H‘W‘
Global average pooling




Recall: Empirical Risk Minimization

mm—g L(h(x;; 0

Neural network

g+l — 9(t) _ \— ZVL (2:;0), y;)

—

Gradient descent update



Computing the gradient of the loss




Learning with function compositions

*F=fsofscfsofrofi
* Suppose f; has learnable parameters w; , takes input z;_; and
produces output z;

OF

. How?
an'

* Need to compute

» Key idea: recurrence

OF : : OF 0z; :
* If we know —, then chain rule gives: — —, second term only requires each
0z; d0z; Ow;

function be differentiable
aF _ aF aZi+1

aZi - aZi_|_1 aZi

 Also



Learning with function compositions

Backpropagation



i = fi(Zz'—hwz')
20 — X
2= Zn

Backpropagation for a sequence of functions

Previous
term

Jz 0z 0z
827; B 8zi+1 (‘97;@

Function
derivative

0z 0z 0z




Backpropagation for a sequence of functions

zi = fi(Zi—1,w;) 0 = & & = Zn
* Assume we can compute partial derivatives of each function

62’@' . 8fi(zi_1,wi) 5’ZZ B 8f7;(z¢_1,wi)
(921'_1 B 8,7;@-_1 811}2' - (911)7;
* Use g(z;) to store gradient of z w.r.t z;, g(w;) for w;
* Calculate g; by iterating backwards

9(zn) = oz 1 g(zi—1) = 9z 071 = 9(2i)

8Zi

0zi—1

* Use gi to compute gradient of parameters
(w;) = 0z 0z; ( .)827;
I\W _(%Z 8’(1}@ AN ow

1



Backpropagation for a sequence of functions

e Each “function” has a “forward” and “backward” module
* Forward module for f.

* takes z, ; and weight w, as input
* produces z; as output
* Backward module for f.
* takes g(z; ) as input
* produces g(z;; ) and g(w;) as output

g(w;) = g(z;)

9(zi—1) = 9(2i)

021 ow;



Backpropagation for a sequence of functions

W/" '



Backpropagation for a sequence of functions




Chain rule for vectors

da _ da e 9,
db  dc db Ob;
%(' ) = da; .
b 1,]) — ab] Jacobian
da  0Oadc

b~ dc db
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Loss as a function
=B
|
+ E3-3
2}

£ - a=m - B

1




Beyond sequences: computation graphs

* Arbitrary graphs of functions
* No distinction between intermediate outputs and parameters

u

X




Computation graph - Functions

* Each node implements two functions

e A “forward”
* Computes output given input

* A “backward”
 Computes derivative of z w.r.t input, given derivative of z w.r.t output



Computation graphs

—1 L2



Computation graphs
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Computation graphs
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Computation graphs
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Exploring convnet
architectures



Deeper is better
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The VGG pattern

* Every convolution is 3x3, padded by 1
* Every convolution followed by RelLU

e ConvNet is divided into “stages”
* Layers within a stage: no subsampling
* Subsampling by 2 at the end of each stage

* Layers within stage have same number of channels

* Every subsampling = double the number of channels



Challenges in training: exploding / vanishing
gradients

* Vanishing / exploding gradients
0z o 0z 8Zn_1 827;+1
82’7; N 8Zn_1 6Zn_2 o @ZZ

* If each term is (much) greater than 1 = explosion of gradients
* If each term is (much) less than 1 = vanishing gradients




Challenges in training: dependence on init




Solutions

e Careful init
e Batch normalization

 Residual connections



Careful initialization

* Key idea: want variance to remain approx. constant
* Variance increases in backward pass => exploding gradient
* Variance decreases in backward pass => vanishing gradient

 “MSRA initialization”
» weights = Gaussian with 0 mean and variance = 2/(k*k*d)

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. K. He, X. Zhang, S. Ren, J. Sun



Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded

0zit1 _ Ofit1(2i, wit1)

Zi+1 = fi—l—l(ziawi—l—l) Oz, - Oz
i )

0z o 0z 6’zn_1 821'_'_1
827; N 8Zn_1 8Zn_2 o aZZ




Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded

5Zi+1 3gz'+1 (Zz', wi—l—l)
Zi+1l — 97;+1(Z7;,wz'+1) T Zi 7 5 -1

0z o 0z 6’zn_1 821'_'_1
827; N 8Zn_1 8Zn_2 o aZZ




Residual connections

* Assumes all z, have the same size
* True within a stage

* Across stages?
* Doubling of feature channels
e Subsampling

* Increase channels by 1x1 convolution

* Decrease spatial resolution by subsampling

Zit1 = 9i+1(2i, wiy1) + subsample(W 2;)



A residual block

* Instead of single layers, have residual connections over block




Bottleneck blocks

* Problem: When channels increases, 3x3 convolutions introduce many
parameters

e 3X3Xc?

* Key idea: use 1x1 to project to lower dimensionality, do convolution,
then come back

e cXd + 3%x3XxXd? + dxXc



The ResNet pattern

e Decrease resolution substantially in first layer
* Reduces memory consumption due to intermediate outputs

* Divide into stages
* maintain resolution, channels in each stage
* halve resolution, double channels between stages

* Divide each stage into residual blocks

* At the end, compute average value of each channel to feed linear
classifier



Putting it all together - Residual networks

Challenge winner's accuracy

30
200

150

100

I 50
H

2010 2011 2012 2013 2014 2015

25

20

15

10




DenseNets







