Image classification

Image classification

* Given an image, produce a label

* Label can be:
* 0/1 or yes/no: Binary classification
* one-of-k: Multiclass classification
* 0/1 for each of k concepts: Multilabel classification

MNIST

* 2D

* 6000 examples per class

10 classes

QAN RN KD 0D
O~<Ne I LS N\
ONN®OYNWVS [~)~
Q—=ad MT A0 N0
O« AMTVvrO N

ONNV P RS Mo

1990’s

* 101 classes

* 10 classes

* 30 examples per class

 Strong category-specific biases
* Clean images

MNIST

1990’s 2004

PASCAL VOC

e 20 classes
* ~500 examples per class

e Clutter, occlusion, natural
scenes

MNIST Caltech 101

1990’s 2004 2007-2012

ImageNet

* 1000 classes
e ~1000 examples per class

 Mix of cluttered and clean
Images

MNIST Caltech 101

1990’s 2004

PASCAL VOC

2007-2013

2013-2017

Why is recognition hard?

Lighting

Learning

* Key idea: teach computer visual concepts by providing examples

X :Images
Y :Labels
D :Distribution over X x Y

Training S: {(wzayz) ND,Z: 17"'7n}

Set

Example

 Binary classifier “Dog” or “not Dog”
e Labels: {0, 1}
* Training set

Learning

* Key idea: teach computer visual concepts by providing examples

S={(x;,y;) ~D,i=1,...,n}

* Want to be able to estimate label y for new images x
* Want to give score s(y, x) for each possible label y, then pick highest scoring
* Want to estimate y(x)
* Want to estimate P(y|x), then pick most likely

Choosing a model class

* Will estimate a probability P(y | x)

* Any function that takes x as input and outputs probability distribution
ch: X — C|y| where C?% is a probability distribution over d classes
* Very large set of possibilities for h

* Constrain choice: Choose a family of possible functions H
* Hypothesis class

Hypothesis class |: Classical models

* Choose h to be a linear classifier over some feature space

* First extract features: z = ¢(x)

* ¢ is a fixed, hand-crafted function that converts images into features useful
for recognition: ¢: X’ - R%

* Next multiply by a weight matrix to produce class scores: s = Wz
W is unknown a priori

* Next normalize scores to a probability
 P(y = k|x) x ek
e “Softmax”

Hypothesis class |: Classical models

* h(x; W) = softmax(W¢(x))

* For different settings of W, get different hypotheses

» Hypothesis class H = {h(-; W); W € RIYI* 4}

* W are parameters: index hypotheses in hypothesis class

f3(s)

= softmax(s)

Choice of feature extractor?

* SIFT, HOG, GIST, BOW....
* The rest of the pipeline is very simple: linear function + softmax

* So heavy lifting must be done by feature extractor

e But how do we design feature extractor?

SIFT

 SIFT itself a series of simple, fixed steps
* Make some of them parametric?

Compute

Compute magnitude Quantize

Histogram

gradients and and bin

orientation

Hypothesis class 2: Multilayer perceptrons

* Key idea: build complex functions by composing many simple functions

_ g(x) = _ g(x) = _ f3(s)
f(X)_WX » » f(X)_WX » » »

General recipe

* Fix hypothesis class
* hy,(x) = softmax (fs(fz (g(f1(X» W1))»W2)»W3))
* h,,(x) = softmax (Wc,b(x))
e Define loss function
* L(hy,(x;),y;) = —log py, (x;)
* Minimize average (or total) loss on the training set

mm—ZL i)

e How do we minimize?
* Why should this work?

Training: Choosing the best hypothesis

* Need to minimize an objective function.
* In general, optimization problem.
* If Lis differentiable and h is differentiable: can do gradient descent

mm—ZL i)

Training = Optimization

e Simple solution: gradient descent

m“i’n f(w)

w(t D = w® _ v F(w®)

Stochastic gradient descent

1 . .
_ - Z L(hw (i), y) Objective function
1
— - Z VwlL(hw(x;),y;) Gradient
)
wa(W) — < VWL(hW (5137,) yz) > Gradient = average of per example
’ gradients
wa(W) ~ V L(hw (.CE‘Z), yz) Stochastic gradient descent using single
B examples
‘ Z Vwl(hw(x;,), i) Stochastic gradient descent using

minibatch

Stochastic gradient descent

 Randomly sample small subset of examples

* Compute gradient on small subset
* Unbiased estimate of true gradient

* Take step along estimated gradient

Computing derivatives
wa(W) ~ VWL(hW(xi)v yz)

* How do we compute gradient?

 Composition of functions: use chain rule

Ol 0z i _ 021
<1 :fl(xawl) 912—:92—2 Ow1 gl@wl
(92’1 (921
2o = fa(21, W2) Ol 023 oL = g2 E?ZQ
25 = f3(za,w3) T m Pon, Wz 0w
Ol Ol B 0z3
| = L(z3,v) 93 = 5 Ows 2 Ows

The gradient of convnets

Backpropagation

Risk

* Given:
e Distribution D

* A hypothesis h € H
e Loss function L

* We are interested in Expected Risk:

R(h) — 4:($,y)NDL(h(‘T)7y)

* Given training set S, and a particular hypothesis h, Empirical Risk:

R(S,h) = Z L(h(z),y)

(w,y)ES

Risk
R(h) = 43(x,y)NDL(h($)ay) R(Z L

* By central limit theorem, (xay)és
G Pn R(S, h) — R(h)

* Variance proportional to 1/n

* For randomly chosen h, empirical risk is an unbiased estimator of
expected risk

Risk

* Empirical risk unbiased estimate of expected risk
* Want to minimize expected risk

* |dea: Minimize empirical risk instead

* This is the Empirical Risk Minimization Principle

R(h) =By ~pL(h(z),y) R(S,h)= Z L(h
(a:,y)ES

h* = arg }rlxéllg R(S, h)

Generalization

R(h) — <1z(ac,y)NDL(h(x)7y) Z L

(:B y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error

Overfitting

* We are minimizing training error

e Empirical risk of chosen hypothesis no longer unbiased estimate:
* We chose hypothesis based on S

* Might have chosen h for which S is a special case
e OQverfitting:
* Minimize training error, but generalization error increases

Controlling generalization error

* Variance of empirical risk inversely proportional to size of S
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* Regularize during optimization!
* Eg. L2 regularization

Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen

Putting it all together

 Want model with least expected risk = expected loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk in training set
* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization

Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!

Loss functions and hypothesis classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R 10.1} log(1 4 e~ ¥A(=)
Negative log likelihood Multiclass classification [0, 1]% p L —log hy(z)
Hinge loss Binary Classification R N max (0,1 — yh(z))
MSE Regression R R (y — h(x))?

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions

f(x) = Wx » mga(:()x,:O) » f(x) = Wx » mga(:()x,:O) » f(x) = Wx

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions
e Caveat: simple functions must include non-linearities
* W(U(Vx)) = (WUV)x

Reducing capacity

256

~ 65K

Reducing capacity

°K ~ 65K

ldea 1: local connectivity

 Inputs and outputs are feature maps
* Pixels only related to nearby pixels

ldea 2: Translation invariance

* Pixels only related to nearby pixels

Local connectivity + translation invariance =
convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =
convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =

convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Convolution as a primitive

T T
\c . #
CI

.

Invariance to distortions

Invariance to distortions

* | ¥
X |26

Image gradients Keypoint descriptor

Invariance to distortions: Pooling

Invariance to distortions: Subsampling

Convolution subsampling convolution

.~.~ B

Convolution subsampling convolution

* Convolution in earlier steps detects more local patterns less resilient
to distortion

* Convolution in later steps detects more global patterns more resilient
to distortion

e Subsampling allows capture of larger, more invariant patterns

Convolution with subsampling

e Subsampling = reducing resolution by dropping rows and columns

 Can be done with strided convolution
 Stride of k means output pixel every k input pixels

* Typically done without anti-aliasing, though anti-aliasing helps?

Ihttps://richzhang.github.io/antialiased-cnns/

Convolution with subsampling

Invariance to deformations

Effect of subsampling

e Same sized filters captures larger neighborhoods on lower resolution
features

* Magnitude of translations / deformations reduce with lower
resolution

* Convolution in earlier steps detects more local patterns less resilient
to deformations / translations

* Convolution in later steps detects more global patterns more resilient
to deformations / translations

e Subsampling allows capture of larger, more invariant patterns

Pooling

 Similar to convolution, but take max or average across window for
every channel

* No learnable parameters

N

A

h Max / average pooling h

A
v

Global Average Pooling

» Special case: take average across entire input space for every channel
» Useful for converting feature maps to vector of image features

g ¢

H‘W‘
Global average pooling

Recall: Empirical Risk Minimization

mm—g L(h(x;; 0

Neural network

g+l — 9(t) _ \— ZVL (2:;0), y;)

—

Gradient descent update

Computing the gradient of the loss

Learning with function compositions

*F=fsofscfsofrofi
* Suppose f; has learnable parameters w; , takes input z;_; and
produces output z;

OF

. How?
an'

* Need to compute

» Key idea: recurrence

OF : : OF 0z; :
* If we know —, then chain rule gives: — —, second term only requires each
0z; d0z; Ow;

function be differentiable
aF _ aF aZi+1

aZi - aZi_|_1 aZi

 Also

Learning with function compositions

Backpropagation

i = fi(Zz'—hwz')
20 — X
2= Zn

Backpropagation for a sequence of functions

Previous
term

Jz 0z 0z
827; B 8zi+1 (‘97;@

Function
derivative

0z 0z 0z

Backpropagation for a sequence of functions

zi = fi(Zi—1,w;) 0 = & & = Zn
* Assume we can compute partial derivatives of each function

62’@' . 8fi(zi_1,wi) 5’ZZ B 8f7;(z¢_1,wi)
(921'_1 B 8,7;@-_1 811}2' - (911)7;
* Use g(z;) to store gradient of z w.r.t z;, g(w;) for w;
* Calculate g; by iterating backwards

9(zn) = oz 1 g(zi—1) = 9z 071 = 9(2i)

8Zi

0zi—1

* Use gi to compute gradient of parameters
(w;) = 0z 0z; (.)827;
I\W _(%Z 8’(1}@ AN ow

1

Backpropagation for a sequence of functions

e Each “function” has a “forward” and “backward” module
* Forward module for f.

* takes z, ; and weight w, as input
* produces z; as output
* Backward module for f.
* takes g(z;) as input
* produces g(z;;) and g(w;) as output

g(w;) = g(z;)

9(zi—1) = 9(2i)

021 ow;

Backpropagation for a sequence of functions

W/" '

Backpropagation for a sequence of functions

Chain rule for vectors

da _ da e 9,
db dc db Ob;
%(') = da; .
b 1,]) — ab] Jacobian
da 0Oadc

b~ dc db

aCL@' Gck
6’ck @b]

Loss as a function
=B
|
+ E3-3
2}

£ - a=m - B

1

Beyond sequences: computation graphs

* Arbitrary graphs of functions
* No distinction between intermediate outputs and parameters

u

X

Computation graph - Functions

* Each node implements two functions

e A “forward”
* Computes output given input

* A “backward”
 Computes derivative of z w.r.t input, given derivative of z w.r.t output

Computation graphs

—1 L2

Computation graphs

0
L

Computation graphs

. - .7
CB" ~

Computation graphs

et

Exploring convnet
architectures

Deeper is better

Challenge winner's accuracy
30

25
20

15

10

2010 2011 2012 2013 2014

Deeper is better

Challenge winner's accuracy
30

25
20

15

10

2010 2011 2012 2013 2014

The VGG pattern

* Every convolution is 3x3, padded by 1
* Every convolution followed by RelLU

e ConvNet is divided into “stages”
* Layers within a stage: no subsampling
* Subsampling by 2 at the end of each stage

* Layers within stage have same number of channels

* Every subsampling = double the number of channels

Challenges in training: exploding / vanishing
gradients

* Vanishing / exploding gradients
0z o 0z 8Zn_1 827;+1
82’7; N 8Zn_1 6Zn_2 o @ZZ

* If each term is (much) greater than 1 = explosion of gradients
* If each term is (much) less than 1 = vanishing gradients

Challenges in training: dependence on init

Solutions

e Careful init
e Batch normalization

 Residual connections

Careful initialization

* Key idea: want variance to remain approx. constant
* Variance increases in backward pass => exploding gradient
* Variance decreases in backward pass => vanishing gradient

 “MSRA initialization”
» weights = Gaussian with 0 mean and variance = 2/(k*k*d)

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. K. He, X. Zhang, S. Ren, J. Sun

Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded

0zit1 _ Ofit1(2i, wit1)

Zi+1 = fi—l—l(ziawi—l—l) Oz, - Oz
i)

0z o 0z 6’zn_1 821'_'_1
827; N 8Zn_1 8Zn_2 o aZZ

Residual connections

* In general, gradients tend to vanish
* Key idea: allow gradients to flow unimpeded

5Zi+1 3gz'+1 (Zz', wi—l—l)
Zi+1l — 97;+1(Z7;,wz'+1) T Zi 7 5 -1

0z o 0z 6’zn_1 821'_'_1
827; N 8Zn_1 8Zn_2 o aZZ

Residual connections

* Assumes all z, have the same size
* True within a stage

* Across stages?
* Doubling of feature channels
e Subsampling

* Increase channels by 1x1 convolution

* Decrease spatial resolution by subsampling

Zit1 = 9i+1(2i, wiy1) + subsample(W 2;)

A residual block

* Instead of single layers, have residual connections over block

Bottleneck blocks

* Problem: When channels increases, 3x3 convolutions introduce many
parameters

e 3X3Xc?

* Key idea: use 1x1 to project to lower dimensionality, do convolution,
then come back

e cXd + 3%x3XxXd? + dxXc

The ResNet pattern

e Decrease resolution substantially in first layer
* Reduces memory consumption due to intermediate outputs

* Divide into stages
* maintain resolution, channels in each stage
* halve resolution, double channels between stages

* Divide each stage into residual blocks

* At the end, compute average value of each channel to feed linear
classifier

Putting it all together - Residual networks

Challenge winner's accuracy

30
200

150

100

I 50
H

2010 2011 2012 2013 2014 2015

25

20

15

10

DenseNets

