
Image classification



Image classification

• Given an image, produce a label
• Label can be:
• 0/1 or yes/no: Binary classification
• one-of-k: Multiclass classification
• 0/1 for each of k concepts: Multilabel classification



MNIST

• 2D
• 10 classes
• 6000 examples per class

1990’s



Caltech 101

• 101 classes
• 10 classes
• 30 examples per class
• Strong category-specific biases
• Clean images

1990’s

MNIST

2004



PASCAL VOC

• 20 classes
• ~500 examples per class
• Clutter, occlusion, natural 

scenes

1990’s

MNIST

2004

Caltech 101

2007-2012



ImageNet

• 1000 classes
• ~1000 examples per class
• Mix of cluttered and clean 

images

1990’s

MNIST

2004

Caltech 101

2007-2013

PASCAL VOC

2013-2017



Why is recognition hard?

Pose/articulation

Scale

Lighting

Clutter/

occlusion



Learning

• Key idea: teach computer visual concepts by providing examples

X :Images

Y :Labels

D :Distribution over X ⇥ Y

S = {(xi, yi) ⇠ D, i = 1, . . . , n}Training 
Set



Example

• Binary classifier “Dog” or ”not Dog”
• Labels: {0, 1}
• Training set
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Learning

• Key idea: teach computer visual concepts by providing examples

• Want to be able to estimate label 𝑦 for new images 𝑥
• Want to give score 𝑠(𝑦, 𝑥) for each possible label 𝑦, then pick highest scoring
• Want to estimate 𝑦 𝑥
• Want to estimate 𝑃(𝑦|𝑥), then pick most likely 

S = {(xi, yi) ⇠ D, i = 1, . . . , n}



Choosing a model class

• Will estimate a probability P(y | x)
• Any function that takes x as input and outputs probability distribution
• where 𝐶! is a probability distribution over d classes
• Very large set of possibilities for h

• Constrain choice: Choose a family of possible functions 𝐻
• Hypothesis class

h : X ! C |Y|



Hypothesis class I: Classical models

• Choose h to be a linear classifier over some feature space
• First extract features: 𝒛 = 𝜙 𝑥
• 𝜙 is a fixed, hand-crafted function that converts images into features useful 

for recognition: 𝜙:𝒳 → ℝ!

• Next multiply by a weight matrix to produce class scores: 𝒔 = 𝑊𝒛
• 𝑊 is unknown a priori

• Next normalize scores to a probability
• 𝑃 𝑦 = 𝑘 𝑥 ∝ 𝑒"!
• “Softmax”



Hypothesis class I: Classical models

• ℎ 𝑥;𝑊 = softmax(𝑊𝜙 𝑥 )
• For different settings of W, get different hypotheses
• Hypothesis class 𝐻 = ℎ ⋅;𝑊 ;𝑊 ∈ ℝ|𝒴| × $

• W are parameters: index hypotheses in hypothesis class

𝑓! 𝑥
= 𝜙(𝑥)

𝑓" 𝑧
= 𝑊𝑧

𝑓# 𝑠
= softmax(𝑠)



Choice of feature extractor?

• SIFT, HOG, GIST, BOW….
• The rest of the pipeline is very simple: linear function + softmax
• So heavy lifting must be done by feature extractor
• But how do we design feature extractor?



SIFT

• SIFT itself a series of simple, fixed steps
• Make some of them parametric?

Compute 
gradients

Compute 
magnitude 

and 
orientation

Quantize 
and bin Histogram



Hypothesis class 2: Multilayer perceptrons

• Key idea: build complex functions by composing many simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)

𝑓# 𝑠
= softmax(𝑠)



General recipe

• Fix hypothesis class
• ℎ3 𝑥 = softmax 𝑓4 𝑓5 𝑔 𝑓6 x,w6 , w5 , w4
• ℎ3 𝑥 = softmax 𝑊𝜙 𝑥

• Define loss function
• 𝐿 ℎ3 𝑥7 , 𝑦7 = −log 𝑝8"(𝑥7)

• Minimize average (or total)  loss on the training set

• How do we minimize?
• Why should this work?

min
w

1

n

nX

i=1

L(hw(xi), yi)



Training: Choosing the best hypothesis

• Need to minimize an objective function.
• In general, optimization problem.
• If L is differentiable and h is differentiable: can do gradient descent

min
w

1

n

nX

i=1

L(hw(xi), yi)



Training = Optimization

• Simple solution: gradient descent

min
w

f(w)

w(t+1) = w(t) � ↵rwf(w(t))



Stochastic gradient descent
f(w) =

1

n

X

i

L(hw(xi), yi)

rwf(w) =
1

n

X

i

rwL(hw(xi), yi)

rwf(w) =< rwL(hw(xi), yi) >

rwf(w) ⇡ 1

|B|

|B|X

k=1

rwL(hw(xik), yik)

rwf(w) ⇡ rwL(hw(xi), yi)

Objective function

Gradient

Gradient = average of per example 
gradients

Stochastic gradient descent using single 
examples

Stochastic gradient descent using 
minibatch



Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
• Unbiased estimate of true gradient

• Take step along estimated gradient



Computing derivatives
rwf(w) ⇡ rwL(hw(xi), yi)

• How do we compute gradient?
• Composition of functions: use chain rule

z1 = f1(x,w1)

z2 = f2(z1,w2)

z3 = f3(z2,w3)

l = L(z3, y) g3 =
@l

@z3

g2 =
@l

@z2
= g3

@z3
@z2
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@z1
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The gradient of convnets

f1 f2 f3 f4 f5x

w1 w2 w3 w4 w5
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Risk

• Given:
• Distribution
• A hypothesis
• Loss function L

• We are interested in Expected Risk:

• Given training set S, and a particular hypothesis h, Empirical Risk:

D
h 2 H

R(h) = E(x,y)⇠DL(h(x), y)

R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Risk

• By central limit theorem,

• Variance proportional to 1/n

• For randomly chosen h, empirical risk is an unbiased estimator of 
expected risk 

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)

ES⇠DnR̂(S, h) = R(h)



Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the Empirical Risk Minimization Principle

h⇤ = arg min
h2H

R̂(S, h)

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Generalization

R(h) = R̂(S, h) + (R(h)� R̂(S, h))

Training 
error

Generalization 
error

R(h) = E(x,y)⇠DL(h(x), y) R̂(S, h) =
1

|S|
X

(x,y)2S

L(h(x), y)



Overfitting

• We are minimizing training error
• Empirical risk of chosen hypothesis no longer unbiased estimate:
• We chose hypothesis based on S
• Might have chosen h for which S is a special case

• Overfitting:
• Minimize training error, but generalization error increases



Controlling generalization error

• Variance of empirical risk inversely proportional to size of S
• Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad 
hypotheses with low training error and high generalization error
• Choose small H!

• For many models, can bound generalization error using some 
property of parameters
• Regularize during optimization!
• Eg. L2 regularization



Controlling generalization error

• How do we know we are overfitting?
• Use a held-out “validation set”
• To be an unbiased sample, must be completely unseen



Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
• Constructing large training sets
• Reducing size of model class
• Regularization



Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!



Loss functions and hypothesis classes



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)



Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• W(U(Vx)) = (WUV)x 



Reducing capacity

256

256

65K



Reducing capacity

65KW

65K

65K



Idea 1: local connectivity

• Inputs and outputs are feature maps
• Pixels only related to nearby pixels



Idea 2: Translation invariance

• Pixels only related to nearby pixels



Local connectivity + translation invariance = 
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2



Local connectivity + translation invariance = 
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2



Local connectivity + translation invariance = 
convolution

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Feature map



Convolution as a primitive
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Invariance to distortions



Invariance to distortions



Invariance to distortions: Pooling

…



Invariance to distortions: Subsampling



Convolution subsampling convolution



Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient
to distortion
• Convolution in later steps detects more global patterns more resilient 

to distortion
• Subsampling allows capture of larger, more invariant patterns


