Image classification

Image classification

* Given an image, produce a label

* Label can be:
* 0/1 or yes/no: Binary classification
* one-of-k: Multiclass classification
* 0/1 for each of k concepts: Multilabel classification

MNIST

* 2D

* 6000 examples per class

10 classes

QAN RN KD 0D
O~<Ne I LS N\
ONN®OYNWVS [~)~
Q—=ad MT A0 N0
O« AMTVvrO N

ONNV P RS Mo

1990’s

* 101 classes

* 10 classes

* 30 examples per class

 Strong category-specific biases
* Clean images

MNIST

1990’s 2004

PASCAL VOC

e 20 classes
* ~500 examples per class

e Clutter, occlusion, natural
scenes

MNIST Caltech 101

1990’s 2004 2007-2012

ImageNet

* 1000 classes
e ~1000 examples per class

 Mix of cluttered and clean
Images

MNIST Caltech 101

1990’s 2004

PASCAL VOC

2007-2013

2013-2017

Why is recognition hard?

Lighting

Learning

* Key idea: teach computer visual concepts by providing examples

X :Images
Y :Labels
D :Distribution over X x Y

Training S: {(wzayz) ND,Z: 17"'7n}

Set

Example

 Binary classifier “Dog” or “not Dog”
e Labels: {0, 1}
* Training set

Learning

* Key idea: teach computer visual concepts by providing examples

S={(x;,y;) ~D,i=1,...,n}

* Want to be able to estimate label y for new images x
* Want to give score s(y, x) for each possible label y, then pick highest scoring
* Want to estimate y(x)
* Want to estimate P(y|x), then pick most likely

Choosing a model class

* Will estimate a probability P(y | x)

* Any function that takes x as input and outputs probability distribution
ch: X — C|y| where C?% is a probability distribution over d classes
* Very large set of possibilities for h

* Constrain choice: Choose a family of possible functions H
* Hypothesis class

Hypothesis class |: Classical models

* Choose h to be a linear classifier over some feature space

* First extract features: z = ¢(x)

* ¢ is a fixed, hand-crafted function that converts images into features useful
for recognition: ¢: X’ - R%

* Next multiply by a weight matrix to produce class scores: s = Wz
W is unknown a priori

* Next normalize scores to a probability
 P(y = k|x) x ek
e “Softmax”

Hypothesis class |: Classical models

* h(x; W) = softmax(W¢(x))

* For different settings of W, get different hypotheses

» Hypothesis class H = {h(-; W); W € RIYI* 4}

* W are parameters: index hypotheses in hypothesis class

f3(s)

= softmax(s)

Choice of feature extractor?

* SIFT, HOG, GIST, BOW....
* The rest of the pipeline is very simple: linear function + softmax

* So heavy lifting must be done by feature extractor

e But how do we design feature extractor?

SIFT

 SIFT itself a series of simple, fixed steps
* Make some of them parametric?

Compute

Compute magnitude Quantize

Histogram

gradients and and bin

orientation

Hypothesis class 2: Multilayer perceptrons

* Key idea: build complex functions by composing many simple functions

_ g(x) = _ g(x) = _ f3(s)
f(X)_WX » » f(X)_WX » » »

General recipe

* Fix hypothesis class
* hy,(x) = softmax (fs(fz (g(f1(X» W1))»W2)»W3))
* h,,(x) = softmax (Wc,b(x))
e Define loss function
* L(hy,(x;),y;) = —log py, (x;)
* Minimize average (or total) loss on the training set

mm—ZL i)

e How do we minimize?
* Why should this work?

Training: Choosing the best hypothesis

* Need to minimize an objective function.
* In general, optimization problem.
* If Lis differentiable and h is differentiable: can do gradient descent

mm—ZL i)

Training = Optimization

e Simple solution: gradient descent

m“i’n f(w)

w(t D = w® _ v F(w®)

Stochastic gradient descent

1 . .
_ - Z L(hw (i), y) Objective function
1
— - Z VwlL(hw(x;),y;) Gradient
)
wa(W) — < VWL(hW (5137,) yz) > Gradient = average of per example
’ gradients
wa(W) ~ V L(hw (.CE‘Z), yz) Stochastic gradient descent using single
B examples
‘ Z Vwl(hw(x;,), i) Stochastic gradient descent using

minibatch

Stochastic gradient descent

 Randomly sample small subset of examples

* Compute gradient on small subset
* Unbiased estimate of true gradient

* Take step along estimated gradient

Computing derivatives
wa(W) ~ VWL(hW(xi)v yz)

* How do we compute gradient?

 Composition of functions: use chain rule

Ol 0z i _ 021
<1 :fl(xawl) 912—:92—2 Ow1 gl@wl
(92’1 (921
2o = fa(21, W2) Ol 023 oL = g2 E?ZQ
25 = f3(za,w3) T m Pon, Wz 0w
Ol Ol B 0z3
| = L(z3,v) 93 = 5 Ows 2 Ows

The gradient of convnets

Backpropagation

Risk

* Given:
e Distribution D

* A hypothesis h € H
e Loss function L

* We are interested in Expected Risk:

R(h) — 4:($,y)NDL(h(‘T)7y)

* Given training set S, and a particular hypothesis h, Empirical Risk:

R(S,h) = Z L(h(z),y)

(w,y)ES

Risk
R(h) = 43(x,y)NDL(h($)ay) R(Z L

* By central limit theorem, (xay)és
G Pn R(S, h) — R(h)

* Variance proportional to 1/n

* For randomly chosen h, empirical risk is an unbiased estimator of
expected risk

Risk

* Empirical risk unbiased estimate of expected risk
* Want to minimize expected risk

* |dea: Minimize empirical risk instead

* This is the Empirical Risk Minimization Principle

R(h) =By ~pL(h(z),y) R(S,h)= Z L(h
(a:,y)ES

h* = arg }rlxéllg R(S, h)

Generalization

R(h) — <1z(ac,y)NDL(h(x)7y) Z L

(:B y)ES

R(h) = R(S,h) + (R(h) — R(S, h))

Training Generalization
error error

Overfitting

* We are minimizing training error

e Empirical risk of chosen hypothesis no longer unbiased estimate:
* We chose hypothesis based on S

* Might have chosen h for which S is a special case
e OQverfitting:
* Minimize training error, but generalization error increases

Controlling generalization error

* Variance of empirical risk inversely proportional to size of S
* Choose very large S!

* Larger the hypothesis class H, Higher the chance of hitting bad
hypotheses with low training error and high generalization error

* Choose small H!

* For many models, can bound generalization error using some
property of parameters
* Regularize during optimization!
* Eg. L2 regularization

Controlling generalization error

* How do we know we are overfitting?
* Use a held-out “validation set”
* To be an unbiased sample, must be completely unseen

Putting it all together

 Want model with least expected risk = expected loss

* But expected risk hard to evaluate

* Empirical Risk Minimization: minimize empirical risk in training set
* Might end up picking special case: overfitting

* Avoid overfitting by:
e Constructing large training sets
* Reducing size of model class
* Regularization

Putting it all together

* Collect training set and validation set

* Pick hypothesis class

* Pick loss function

* Minimize empirical risk (+ regularization)

* Measure performance on held-out validation set
* Profit!

Loss functions and hypothesis classes

Loss function Problem Range of h Yy Formula
Log loss Binary Classification R 10.1} log(1 4 e~ ¥A(=)
Negative log likelihood Multiclass classification [0, 1]% p L —log hy(z)
Hinge loss Binary Classification R N max (0,1 — yh(z))
MSE Regression R R (y — h(x))?

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions

f(x) = Wx » mga(:()x,:O) » f(x) = Wx » mga(:()x,:O) » f(x) = Wx

Multilayer perceptrons

* Key idea: build complex functions by composing simple functions
e Caveat: simple functions must include non-linearities
* W(U(Vx)) = (WUV)x

Reducing capacity

256

~ 65K

Reducing capacity

°K ~ 65K

ldea 1: local connectivity

 Inputs and outputs are feature maps
* Pixels only related to nearby pixels

ldea 2: Translation invariance

* Pixels only related to nearby pixels

Local connectivity + translation invariance =
convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =
convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Local connectivity + translation invariance =

convolution

54 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Convolution as a primitive

T T
\c . #
CI

.

Invariance to distortions

Invariance to distortions

* | ¥
X |26

Image gradients Keypoint descriptor

Invariance to distortions: Pooling

Invariance to distortions: Subsampling

Convolution subsampling convolution

.~.~ B

Convolution subsampling convolution

* Convolution in earlier steps detects more local patterns less resilient
to distortion

* Convolution in later steps detects more global patterns more resilient
to distortion

e Subsampling allows capture of larger, more invariant patterns

