The Data Challenge



Neural networks need data

* ImageNet contains millions of labeled images
e Extremely expensive to collect
* Host of ethical issues

* Most domains do not have large labeled datasets
* What can we do?



The “fundamental law” of neural networks

* Neural networks must be trained on a large dataset

* If not enough labeled data for target task, then what?
* Unlabeled data from target domain: Self-supervised learning
* Labeled + Unlabeled data for target task: Semi-supervised learning
 Labeled data from a related problem domain: Few-shot / transfer learning



_earning from unlabeled data: Self-supervised
earning

* Two classes of approaches

* Pretext-based learning
* Design a “pretext” task that leads to good features

* Contrastive learning
* Spread images out in feature space



Pretext tasks

* Transform input, task network with predicting transformation




Pretext tasks

 Remove data, then task network with predicting it




Pretext tasks

e Use some source with additional data
* E.g. videos
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1. Collect 2. Segment 3. Train
videos using motion ConvNet

Pathak, Deepak, et al. "Learning Features by Watching
Objects Move." CVPR. Vol. 1. No. 2. 2017.



Ego-motion < vision: view prediction

Slide credit: Dinesh Jayaraman



Approach idea: Ego-motion equivariance

Training data Equivariant embedding
Unlabeled video + organized by ego-motions

motor signals

Pairs of frames related by

similar ego-motion should

be related by same feature
transformation
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Self-supervision from multimodal data

Owens et al, CVPR 2016



Comparison
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Contrastive learning

* Training for classification is great!
 However, no class labels ®
* |dea: let data define the classes



DeepCluster

Use representation to
cluster dataset

Use pseudo-labels to
produce representation



Instance Discrimination

e Simpler idea: let each image (+
data augmentations) be its own
class

* Challenge: number of classes too
many! =



SImCLR

* Sample a batch of images
X1, ey Xy
* Augment each to produce
Xn+1r =+rX2n
e~ d(xixiyn)

e~ A(xp.x;)

* Loss = —log };;
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Why does this work?

* Data augmentation?
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Curioser and curioser
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Why does this work

Representations
(for transfer tasks)
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e Simple mechanism:

* Spread images out in feature
space while ensuring invariance
to augmentation

* Current techniques appear to be
as good as supervised training

* But need much longer training,
large datasets



Semi-supervised learning

 What if we have both labeled and unlabeled data?
* E.g., dataset only partially labeled



Semi-supervised learning | — Self-training /
Psuedo-labeling
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Semi-supervised learning Il — Entropy
minimization
* Loss function on labeled examples: standard negative log likelihood

* Loss function on unlabeled examples: entropy

* H(p) = — X;pilogp;
* Entropy is high when probabilities are uniform
* Minimize entropy = encourage classifier to be more confident



Semi-supervised learning IIl — Consistency
regularization

* Loss on unlabeled images: consistency between predictions on
augmented versions
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Semi-supervised learning IV - FixMatch

Unlabeled
example

Weakly-
augmented

Strongly-

Prediction

Pseudo-label

Prediction




Semi-supervised learning V — S4L

e Simple idea: use self-supervised loss on unlabeled data
» “Self-supervision for semi—upervised learning”



Few-shot learning

Base classes (many training examples) Novel classes (few training examples)
X \ | \
‘ Classifier (base and novel categories)

Feature

Representation learning = | .. - ior




The challenge: Intra-class variation




“Train set” “Test set”
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Mouse lemur

Beaver

Philippine Tarsier



Key cue: shared modes of variation




How do humans do this?

Bird, grey color, long
beak, long legs,
black markings on
head,...

&

Inductive biases during
learning

More invariant representations



Better representations: metric learr

True class boundary

INg




Better representations: metric learning

“One-shot” class boundary



Metric learning

* Pull same-class pairs closer and different-class pairs apart
e Contrastive loss (DrLIM)

e =d(x,x) ify=y'

e = max (O,m — d(x,x’))2 ify+y'
* Triplet loss

« =max(d(x,xy) —d(x,x_)+y,0)

Dimensionality reduction by learning an invariant mapping. Raia Hadsell, Sumit Chopra, Yann LeCun.
Computer Vision and Pattern Recognition (CVPR), 2006



Meta-learning

e Given:

Small training set
(few training examples)

* Produce:

e |dea: Make this a learnable function!



Meta-learning
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Meta-learning




Meta-learning: training
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An army of meta-learners

Vinyals, Oriol, et al. "Matching networks for one shot learning." NIPS. 2016.
* Ravi, Sachin, and Hugo Larochelle. "Optimization as a model for few-shot learning." ICLR, 2017.
* Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." NIPS. 2017.

* Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep
networks." ICML. 2017.



Meta-learning : MAML

* Given training set S, query example g, need function h(S,q ; w)

* |dea:
* w is initialization of neural network
* h does a few SGD steps using S and then classifies q
* Backpropagating through h is difficult but can be done



Meta-learning: Prototypical Networks
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Meta-learning: FEAT
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Meta-learning: FRN
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