
CS667 Homework 4
(due 15 October)

For this homework you will implement direct illumination calculations in a Monte
Carlo ray tracer written in Java. You can download the code from CMS. Some fur-
ther details of what you’re expected to implement are included in the comments of
the classes mentioned below.

!e provided code is a ray tracer that supports triangles, triangle meshes, and
spheres, with rudimentary box-tree acceleration. It supports only Lambertian re-
"ectors and emitters.

1. Implement the Microfacet material based on Walter et al. [1]. !e only major
wrinkle is that the Microfacet material has a di#use component and a specular
component, whereas the paper describes a two-sided model with no provision
for di#use re"ection. Your BRDF should simply be the sum of a (colored) dif-
fuse component and the (uncolored) microfacet BRDF. You should sample it by
randomly choosing to sample either the specular or the di#use component.

!e renderer is implemented in an architecture that has Renderers that use di#er-
ent algorithms for computing ray radiance. !e only Renderer (for now) is Direc-
tOnlyRenderer, which computes direct illumination by calling a DirectIlluminator.
!e only working DirectIlluminator is ProjSolidAngleIlluminator, which does
Monte Carlo integration over the incident hemisphere using uniform sampling
with respect to projected solid angle.

!is works $ne, but it is terribly ine%cient, requiring thousands of samples per
pixel to get good results even with Lambertian materials and friendly illumination
setups. Your job is to implement three other sampling strategies for direct illumi-
nation.

2. Implement LuminairesIlluminator, which does Monte Carlo integration over the
area of the luminaires. !is includes implementing area sampling for the di#er-
ent types of geometry.

3. Implement BRDFIlluminator, which does Monte Carlo integration over the in-
cident hemisphere using importance sampling according to the BRDF. !is in-
cludes implementing importance sampling for each material.

4. Implement MultipleIlluminator, which does multiple importance sampling for
the luminaries and BRDF according to Veach and Guibas [2] using the balance
heuristic. To take this a little farther, implement the power heuristic as well.

!is last part requires little new code once the previous two parts are working, but
some subtleties arise because of the need to unify the integration domains.

Implementation

!e Microfacet class contains a main() method that will help you test your sam-
pling code. It produces four images of the hemisphere, showing: (a) the BRDF
value, (b) the reported probability density, (c) the actual probability density (com-
puted using a histogram of many generated samples), and (d) the ratio between (a)
and (b). If your sampling code is correct, then (b) and (c) should match exactly
(save for some noise) and (d) should very pretty smoothly without a di#use com-
ponent.

For testing the illuminators, I’m providing a few scenes for which analytical solu-
tions are available (for a one-pixel image, the provided outer loop will print the
pixel value to the console). With enough samples you should see all your methods
converging to the correct numbers.

You might $nd it easier to implement the illuminators $rst, since they can be
tested with just di#use materials.

I am also providing a set of other test scenes, with the output from my implemen-
tation, on the web page for this assignment. One of the scenes, plates.xml, resem-
bles Veach & Guibas’s Figure 2 test scene, and with multiple importance sampling
you should be able to get nice results for all the sources re"ected in all the plates.

References

[1] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance.
“Microfacet Models for Refraction through Rough Surfaces.” In proceedings
of Eurographics Symposium on Rendering 2007.

[2] Eric Veach and Leonidas J. Guibas. “Optimally Combining Sampling Tech-
niques for Monte Carlo Rendering.” In proceedings of SIGGRAPH 95.

