
CS 664
Visual Motion

Daniel Huttenlocher

2

Visual Motion

Over sequence of images can determine
which pixels move where
Differs from motion in the world
– Camera motion

• Pan, tilt, zoom

– Motion parallax
• Information about depth from camera motion

– Scene motion
• Reveals independent objects and behaviors

– Un-detectable motion
• No/low intensity variation

3

Motion Analysis in Video

Video insertion
– Compute motion in one image sequence
– Use to transform frames of another sequence

and superimpose
– Today used to insert signs and markings into

sporting events

Panoramic mosaics with variations in depth

4

Estimating Visual Motion

Historically two different approaches
– Direct methods, based on local image

derivatives at each pixel
– Feature based methods, sparse

correspondence

We will focus on direct methods
– Used most in practice
– Recover image motion from spatio-temporal

variations in brightness
– Dense estimates but can be sensitive to

variations in appearance

5

Direct Motion Estimation Methods

Based on the following assumptions
– Every pixel in image I goes to some location in

subsequent image J
– Overall brightness of images I,J does not

change (much)

Called brightness constancy equation
I(x,y) ≈ J(x+u(x,y), y+v(x,y))

14131615

1211109

8765

4321

16151413

9101112

4321

8765

-2-222

-3-113

0000

0000

0000

0000

-1-1-1-1

1111

I J u v

6

Using Brightness Constancy

Minimization formulation
– Seek (u(x,y),v(x,y)) minimizing error

(I(x,y)-J(x+u(x,y),y+v(x,y))2

– Not practical to search explicitly!

Linearization
– Relate motion to image derivatives

• Gradient constraint

– Assuming small u,v (on order of a pixel)

– First order term of Taylor series expansion of
brightness constancy

7

Gradient Constraint

One-dimensional example – linearization
– Estimate displacement d using derivative

• Two functions f(x) and g(x)=f(x-d)

– Taylor series expansion
f(x-d) = f(x) – d f’(x) + E

• Where f’ denotes derivative

– Now write difference as
f(x)-g(x) = d f’(x) + E

– Neglecting higher order terms
d = (f(x)-g(x))/f’(x)

– Note only for small d

x

f
g

x

f
g

8

Gradient Constraint
(or Optical Flow Constraint)

Same approach extends naturally to 2D
I(x,y) ≈ J(x+u,y+v), u=u(x,y), v=v(x,y)

– Assume time-varying image intensity well
approximated by first order Taylor series

J(x+u,y+v) ≈ I(x,y)+Ix(x,y)⋅u+Iy(x,y)⋅v+It

– Substituting
Ix(x,y)⋅u+Iy(x,y)⋅v ≈ -It

– Using gradient notation
∇I⋅(u,v) ≈ -It

– Linear constraint on motion (u,v) at each pixel
– Can only estimate motion in gradient direction

9

Aperture Problem (Normal Flow)

Can only measure motion in direction
normal to edge (along gradient)

10

Aperture Problem (Normal Flow)

Gradient constraint defines line in (u,v)
space

∇I⋅(u,v) ≈ -It

Methods based solely on per pixel
estimates don’t work well

u

v

11

Combining Local Constraints

Each pixel defines linear constraint on
possible (u,v) displacement
– For set of pixels with same displacement

combine constraints to get estimate
– For pixels with different displacements,

somehow identify that is case

u

v

u

v

12

Patch Translation [Lucas-Kanade]

()∑
Ω∈

++=
yx

tyx IvyxIuyxIvuE
,

2),(),(),(

Minimizing

Assume a single velocity for all pixels within an image patch

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑
∑

∑∑
∑∑

ty

tx

yyx

yxx

II
II

v
u

III
III
2

2

() t
T IIUII ∑∑ ∇−=∇∇
r

LHS: sum of the 2x2 outer product of the gradient vector

13

The Aperture Problem

()()∑ ∇∇= TIIMLet

• Algorithm: At each pixel compute by solving

• M is singular if all gradient vectors point in the same direction
• e.g., along an edge
• of course, trivially singular if the summation is over a single pixel
or there is no texture

• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK

and
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

=
∑
∑

ty

tx

II
II

b

u bMu =

14

Least Squares Solution

u minimizing Mu=b
Compute (MTM)-1 MTb
– Method of normal equations, can derive from

setting partial derivatives to zero
– Closed form for 2x2

a b
c d

A = A-1 = 1/(ad-bc)
d -b

-c a

Where det(A)=ad-bc not (near) zero

15

SSD Surface in Textured Area

16

SSD Surface at an Edge

17

SSD in Homogeneous Area

18

Translational Motion

Can estimate small translation over local
patch around each pixel
– Fast using box sums
– Note relation to corner detection
– Poor estimate if matrix nearly singular
– Also poor if patch contains more than one

underlying motion

Improvements
– Multiple motions – robust statistical techniques
– Larger translations – pyramid methods

19

Multiple Motions

Robust statistical techniques for finding
predominant motion in a region
Consider approach of iteratively
reweighted least squares (IRLS)
– As illustration of robust methods

Generalize minimization problem to
minu ⎟⎜W(Mu – b)⎟⎜

– Weight matrix W is diagonal
– Lessen importance of pixels that don’t match
– Iterate to find “good” weights
– Note in unweighted case W is identity matrix

20

Finding Predominant Motion

Minimization generalizes in obvious way
u* = (MTW2M)-1 MTW2b

Determining good weights to use
– Start by computing least squares solution, u0

– Iteratively compute better solutions
• Compute error for each pixel based on previous

solution uk-1 and use that to set weight per pixel

– Depends on initial solution being good enough
to allow “bad pixels” to have largest error
• Have to measure error based on image intensity

matches, it’s the only thing we can measure

21

Updating Weights

To solve for uk given uk-1

– Create weights Wk = diag(w1
k … wn

k) where

– Where ri
k-1 is measure of error at i-th pixel

with motion estimate from iteration k-1
• Compare i-th pixel value to matching pixel of

other image (using uk-1 for correspondence)

– And c is set based on robust measure of good
versus bad data, such as median
• Common value is 1/.6745 median(ri

k-1)

wi
k =

1 if ri
k-1 ≤ c

c/ri
k-1 otherwise

22

Weights Example

455

446

578

101011

356

478

I J

uk-1

median = 1
c ≈ 1.48

ri
k-1: 0,0,1,0,1,1,6,5,6

wi
k: 1,1,1,1,1,1,.24,.29,.24

23

Global Motion Estimation

Estimate motion vectors that are
parameterized over some region
– Each vector fits some low-order model of how

vectors change

Affine motion model is commonly used
u(x,y) = a1+a2x+a3y
v(x,y) = a4 + a5x +a6y

Substituting into gradient constraint eqn.
Ix(a1+a2x+a3y) + Iy(a4 + a5x +a6y) ≈ -It

– Each pixel provides a linear constraint in six
unknowns

24

Affine Transformations

Consider points (x,y) in plane rather than
vectors for the moment
– Linear transformation and translation

x’ = a1+a2x+a3y

y’ = a4 + a5x +a6y

– In matrix form A(z)=Lz+b

– Maps any triangle to any triangle
• Defined by three corresponding pairs of points

a1
a4

x
y

x’
y’

a2 a3
a5 a6

= +

25

Why Affine Transformations

Simple (and often inaccurate) model
of projection
– Point (x,y,z) in space maps to (x,y) in

image
– Orthographic or parallel projection

Somewhat reasonable model for
telephoto lens
Yields affine transformation of plane
for viewing “flat objects”
– 3D rotation, translation followed by

orthographic projection and scaling

26

Affine Motion Estimation

Minimization problem become that of
estimating the parameters a1, … a6

– Rather than just two parameters u,v

Still (over-constrained) linear system but
in more unknowns
– Again use least squares to solve

Separable into two independent 3 variable
problems
– a1, a2, a3 reflect only u-component of motion
– a4, a5, a6 reflect only v-component of motion

27

Affine Motion Equations

Again compute (DTD)-1 DTt
– Or (re)weighted version for IRLS

Now two 3x3 problems, one for Ix and one
for Iy, as opposed to single 2x2 problem
Problem for Ix and u motion (Iy analogous)
– T remains same, D changes

Ix1 x1 Ix1 y1 Ix1

Ixn xn Ixn yn Ixn

… ……

D =

28

Multiple (Layered) Motions

Combining global parametric motion
estimation with robust estimation
– Calculate predominant parameterized motion

over entire image (e.g., affine)
– Corresponds to largest planar surface in scene

under orthographic projection
• If doesn’t occupy majority of pixels robust

estimator will probably fail to recover its motion

– Outlier pixels (low weights in IRLS) are not
part of this surface
• Recursively try estimating their motion
• If no good estimate, then remain outliers

29

Other Global Motion Models

The affine model is simple but not that
accurate in some imaging situations
– For instance “pinhole” rather than “parallel”

camera model for closer objects
– Non-planar surfaces
– Explicit modeling of motion parallax

Projective planar case
x’ = (h1+h2x+h3y)/(h7+h8x+h9y)
y’ = (h4+h5x+h6y)/(h7+h8x+h9y)
and u=x’-x, v=y’-y

3D models such as residual planar parallax

30

Coarse to Fine Motion Estimation

Estimate residual motion at each level of
Gaussian pyramid

Pyramid of image I Pyramid of image J

Original

½ res

…

1/2k res

I0,J0

I1,J1

…

Ik,Jk

31

Coarse to Fine Estimation

Compute Mk, estimate of motion at level k
– Can be local motion estimate (uk,vk)

• Vector field with motion of patch at each pixel

– Can be global motion estimate
• Parametric model (e.g., affine) of dominant

motion for entire image

– Choose max k such that motion about one pixel

Apply Mk at level k-1 and estimate
remaining motion at that level, iterate
– Local estimates: shift Ik by 2(uk,vk)
– Global estimates: apply inverse transform to Jk-1

32

Global Motion Coarse to Fine

Compute transformation Tk mapping
pixels of Ik to Jk

Warp image Jk-1 using Tk

– Apply inverse of Tk

– Double resolution of Tk (translations double)

Compute transformation Tk-1 mapping
pixels of Ik to warped Jk-1

– Estimate of “residual” motion at this level
– Total estimate of motion at this level is

composition of Tk-1 and resolution doubled Tk

• In case of translation just add them

33

Affine Mosaic Example

Coarse-to-fine affine motion
– Pan tilt camera sweeping repeatedly over scene

Moving objects removed from background
– Outliers in motion estimate, use other scans

34

SSD

An alternative to gradient based methods
is template matching
– Treat a rectangle around each pixel as a

“template” to find best match in other image
– Search over possible translations minimizing

some error criterion (or maximizing quality)
– Generally use sum squared difference (SSD)

Σ Σ (I(x,y)-J(x+u,y+v))2

– Sometimes compute cross correlation
– Compute over local neighborhood

