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Visual Motion

= Over seqguence of images can determine
which pixels move where

= Differs from motion in the world
— Camera motion
e Pan, tilt, zoom
— Motion parallax
e Information about depth from camera motion
— Scene motion
e Reveals independent objects and behaviors
— Un-detectable motion

e No/low intensity variation
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Motion Analysis in Video

= Video Insertion
— Compute motion in one image sequence

— Use to transform frames of another sequence
and superimpose

— Today used to insert signs and markings into
sporting events

= Panoramic mosaics with variations in depth
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Estimating Visual Motion

= Historically two different approaches

— Direct methods, based on local image
derivatives at each pixel

— Feature based methods, sparse
correspondence

= \WWe will focus on direct methods
— Used most In practice

— Recover image motion from spatio-temporal
variations in brightness

— Dense estimates but can be sensitive to
variations in appearance
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Direct Motion Estimation Methods

= Based on the following assumptions

— Every pixel in image | goes to some location in
subsequent image J

— Overall brightness of images 1,J does not
change (much)

= Called brightness constancy equation
I(X,y) = J(X+u(X,y), y+Vv(X.,y))
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Using Brightness Constancy

= Minimization formulation
— Seek (U(x,y),v(X,y)) minimizing error
(1%, y)-I(x+u(X,y),y+v(X,y))?
— Not practical to search explicitly!
* Linearization

— Relate motion to image derivatives
e Gradient constraint
— Assuming small u,v (on order of a pixel)

— First order term of Taylor series expansion of
brightness constancy
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Gradient Constraint

= One-dimensional example — linearization
— Estimate displacement d using derivative
e Two functions f(x) and g(x)=f(x-d)
— Taylor series expansion
f(x-d) =f(x) —d f(x) + E
e Where ' denotes derivative
— Now write difference as X

f(x)-g(x) =d f(x) +E b
g
— Neglecting higher order terms Lf
J /7
d = (f)-g0)/F () g
— Note only for small d x
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Gradient Constraint
(or Optical Flow Constraint)

= Same approach extends naturally to 2D

I(X,y) = J(X+Uu,y+V), u=u(X,y), v=Vv(X,y)

— Assume time-varying image intensity well

approximated by first order Taylor series

JOXHULY+V) = 1Y)+ (Y U+ () v+,

— Substituting
L (OGY) U+l (X, y) Vv ~ -l

— Using gradient notation
VI-(u,v) = -1l

— Linear constraint on motion (u,Vv) at each pixel

— Can only estimate motion in gradient direction
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Aperture Problem (Normal Flow)

= Can only measure motion in direction
normal to edge (along gradient)
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Aperture Problem (Normal Flow)

» Gradient constraint defines line in (u,v)
space

VI-(u,v) = -1,

* Methods based solely on per pixel
estimates don’t work well
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Combining Local Constraints

= Each pixel defines linear constraint on
possible (u,v) displacement

— For set of pixels with same displacement
combine constraints to get estimate

— For pixels with different displacements,
somehow identify that is case
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Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

Euv)= Y (1L yu+1, 06y 1, f

DRt R

> viviT)g =-vii,

LHS: sum of the 2x2 outer product of the gradient vector
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The Aperture Problem

o let
Let M =2 (VINVI)  and b:{—% J
y ot
« Algorithm: At each pixel compute u by solving Mu=b

* M is singular if all gradient vectors point in the same direction

* e.g., along an edge

» of course, trivially singular if the summation is over a single pixel
or there is no texture

* i.e., only normal flow is available (aperture problem)

e Corners and textured areas are OK
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Least Squares Solution

= U minimizing Mu=b
= Compute (MTM)-1 MTb

— Method of normal equations, can derive from
setting partial derivatives to zero

— Closed form for 2x2

A = [a bJ Al = 1/(ao|-bc)[d 'bJ
c d -C a

Where det(A)=ad-bc not (near) zero
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SSD Surface in Textured Area




SSD Surface at an Edge




SSD iIn Homogeneous Area
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Translational Motion

= Can estimate small translation over local
patch around each pixel

— Fast using box sums
— Note relation to corner detection
— Poor estimate if matrix nearly singular

— Also poor if patch contains more than one
underlying motion

* Improvements
— Multiple motions — robust statistical techniques
— Larger translations — pyramid methods
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Multiple Motions

= Robust statistical techniques for finding
predominant motion in a region

= Consider approach of iteratively
reweighted least squares (IRLS)
— As Illustration of robust methods

= Generalize minimization problem to
min, |W(Mu —b) |
— Weight matrix W is diagonal
— Lessen importance of pixels that don’t match
— Iterate to find “good” weights
— Note in unweighted case W is identity matrix
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Finding Predominant Motion

= Minimization generalizes in obvious way
u* = (MTW2M)-1 MTW2b
= Determining good weights to use

— Start by computing least squares solution, u®

— Iteratively compute better solutions

e Compute error for each pixel based on previous
solution uk1 and use that to set weight per pixel

— Depends on initial solution being good enough
to allow “bad pixels” to have largest error

e Have to measure error based on image intensity
matches, it’s the only thing we can measure
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Updating Weights

= To solve for uk given uk-1
— Create weights Wk = diag(w,¥ ... w k) where

’ 1lifr;xi<c
wiK = _
! c/r, k-1 otherwise

— Where r; K1 is measure of error at i-th pixel
with motion estimate from iteration k-1

e Compare i-th pixel value to matching pixel of

other image (using uk-1 for correspondence)

— And c Is set based on robust measure of good
versus bad data, such as median

e Common value is 1/.6745 median(r;, 1)
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Weights Example

T 8| 7|4
6 4 4 - uk—l
55| 4 — ——T—| 6| 5|3
11/10|10
| J
r.x1.0,0,1,0,1,1,6,5,6 median = 1
c~1.48

w; K:1,1,1,1,1,1,.24,.29,.24
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Global Motion Estimation

= Estimate motion vectors that are
parameterized over some region

— Each vector fits some low-order model of how
vectors change

= Affine motion model iIs commonly used
u(x,y) = a;+ayx+agy
V(X,y) = a, + agX +agy

= Substituting into gradient constraint egn.

I (a;+ax+agy) + 1 (a, + agx +agy) = -l;

— Each pixel provides a linear constraint in six
unknowns
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Affine Transformations

= Consider points (X,y) In plane rather than
vectors for the moment

— Linear transformation and translation

X' = a;+a,X+agy

y = a, + agX +agy

— In matrix form A(z)=Lz+b
X’ a, ag| | x a,
y’ as ag) |y | 7| as

— Maps any triangle to any triangle

¥

e Defined by three corresponding pairs of points
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Why Affine Transformations

= Simple (and often inaccurate) model
of projection

— Point (X,y,z) in space maps to (X,y) in ~—
Image
— Orthographic or parallel projection
= Somewhat reasonable model for = /

telephoto lens

* Yields affine transformation of plane
for viewing “flat objects”

— 3D rotation, translation followed by
orthographic projection and scaling
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Affine Motion Estimation

= Minimization problem become that of
estimating the parameters a,, ... a4

— Rather than just two parameters u,v

= Still (over-constrained) linear system but
In more unknowns
— Again use least squares to solve

= Separable into two independent 3 variable
problems
— a4, a,, as reflect only u-component of motion
— a4, asg, ag reflect only v-component of motion
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Affine Motion Equations

= Again compute (D'D)-1 DTt
— Or (re)weighted version for IRLS

= Now two 3x3 problems, one for I, and one
for 1, as opposed to single 2x2 problem

= Problem for I, and u motion (l, analogous)
— T remains same, D changes

‘ )
le Xl le yl le

D =
an Xn Ixn yn Ixy




Multiple (Layered) Motions

= Combining global parametric motion
estimation with robust estimation
— Calculate predominant parameterized motion
over entire image (e.g., affine)
— Corresponds to largest planar surface in scene
under orthographic projection

e If doesn’t occupy majority of pixels robust
estimator will probably fail to recover its motion

— Outlier pixels (low weights in IRLS) are not
part of this surface

e Recursively try estimating their motion

e If no good estimate, then remain outliers
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Other Global Motion Models

* The affine model is simple but not that
accurate in some imaging situations

— For instance “pinhole” rather than “parallel”
camera model for closer objects

— Non-planar surfaces
— Explicit modeling of motion parallax

= Projective planar case
X" = (h;+hyx+hzy)/(h;+hgx+hgy)
y' = (hy+hgx+hgy)/(h,+hgx+hgy)
and u=x’-x, v=y’-y
= 3D models such as residual planar parallax
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Coarse to Fine Motion Estimation

= Estimate residual motion at each level of
Gaussian pyramid

1/2k res j j |k Jk
/ / / /

2 res / / / / 11 J1

Original |0 30

Pyramid of image | Pyramid of image J
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Coarse to FIine Estimation

= Compute MK, estimate of motion at level k
— Can be local motion estimate (uk,vk)
e Vector field with motion of patch at each pixel

— Can be global motion estimate

e Parametric model (e.g., affine) of dominant
motion for entire image

— Choose max k such that motion about one pixel

= Apply Mk at level k-1 and estimate
remaining motion at that level, iterate

— Local estimates: shift Ik by 2(uk,vk)
— Global estimates: apply inverse transform to Jk-1
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Global Motion Coarse to Fine

= Compute transformation Tk mapping
pixels of Ik to Jk

= Warp image Jk-1 using Tk
— Apply inverse of Tk
— Double resolution of Tk (translations double)
= Compute transformation Tkl mapping
pixels of Ik to warped Jk-1

— Estimate of “residual” motion at this level

— Total estimate of motion at this level iIs
composition of Tk-1 and resolution doubled Tk

e |n case of translation just add them
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Affine Mosaic Example

= Coarse-to-fine affine motion
— Pan tilt camera sweeping repeatedly over scene

= Moving objects removed from background
— Qutliers in motion estimate, use other scans

A o T R e vk
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SSD

= An alternative to gradient based methods
Is template matching

— Treat a rectangle around each pixel as a
“template” to find best match in other image

— Search over possible translations minimizing
some error criterion (or maximizing quality)

— Generally use sum squared difference (SSD)
2 X (I(X,y)-I(X+u,y+Vv))?

— Sometimes compute cross correlation

— Compute over local neighborhood
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