

CS 664 Visual Motion

Daniel Huttenlocher

Visual Motion

- Over sequence of images can determine which pixels move where
- Differs from motion in the world
 - Camera motion
 - Pan, tilt, zoom
 - Motion parallax
 - Information about depth from camera motion
 - Scene motion
 - Reveals independent objects and behaviors
 - Un-detectable motion
 - No/low intensity variation

Motion Analysis in Video

- Video insertion
 - Compute motion in one image sequence
 - Use to transform frames of another sequence and superimpose
 - Today used to insert signs and markings into sporting events
- Panoramic mosaics with variations in depth

Estimating Visual Motion

- Historically two different approaches
 - Direct methods, based on local image derivatives at each pixel
 - Feature based methods, sparse correspondence
- We will focus on direct methods
 - Used most in practice
 - Recover image motion from spatio-temporal variations in brightness
 - Dense estimates but can be sensitive to variations in appearance

Direct Motion Estimation Methods

- Based on the following assumptions
 - Every pixel in image I goes to some location in subsequent image J
 - Overall brightness of images I,J does not change (much)
- Called brightness constancy equation
 I(x,y) ≈ J(x+u(x,y), y+v(x,y))

1	2	3	4
5	6	7	8
9	10	11	12
15	16	13	14

5	6	7	8
1	2	3	4
12	11	10	9
13	14	15	16

0	0	0	0	
0	0	0	0	
3	1	-1	-3	
2	2	-2	-2	

1	1	1	1	
-1	-1	-1	-1	
0	0	0	0	
0	0	0	0	
V				

Using Brightness Constancy

- Minimization formulation
 - Seek (u(x,y),v(x,y)) minimizing error $(I(x,y)-J(x+u(x,y),y+v(x,y))^2$
 - Not practical to search explicitly!
- Linearization
 - Relate motion to image derivatives
 - Gradient constraint
 - Assuming small u,v (on order of a pixel)
 - First order term of Taylor series expansion of brightness constancy

Gradient Constraint

- One-dimensional example linearization
 - Estimate displacement d using derivative
 - Two functions f(x) and g(x)=f(x-d)
 - Taylor series expansion

$$f(x-d) = f(x) - d f'(x) + E$$

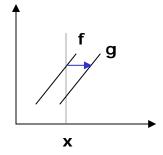
- Where f' denotes derivative
- Now write difference as

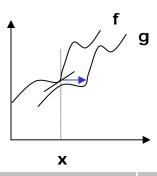
$$f(x)-g(x) = d f'(x) + E$$

Neglecting higher order terms

$$d = (f(x)-g(x))/f'(x)$$

Note only for small d





Gradient Constraint (or Optical Flow Constraint)

Same approach extends naturally to 2D

$$I(x,y) \approx J(x+u,y+v), u=u(x,y), v=v(x,y)$$

 Assume time-varying image intensity well approximated by first order Taylor series

$$J(x+u,y+v) \approx I(x,y)+I_{x}(x,y)\cdot u+I_{y}(x,y)\cdot v+I_{t}$$

Substituting

$$I_{\mathbf{x}}(\mathbf{x},\mathbf{y})\cdot\mathbf{u}+I_{\mathbf{y}}(\mathbf{x},\mathbf{y})\cdot\mathbf{v}\approx-I_{\mathbf{t}}$$

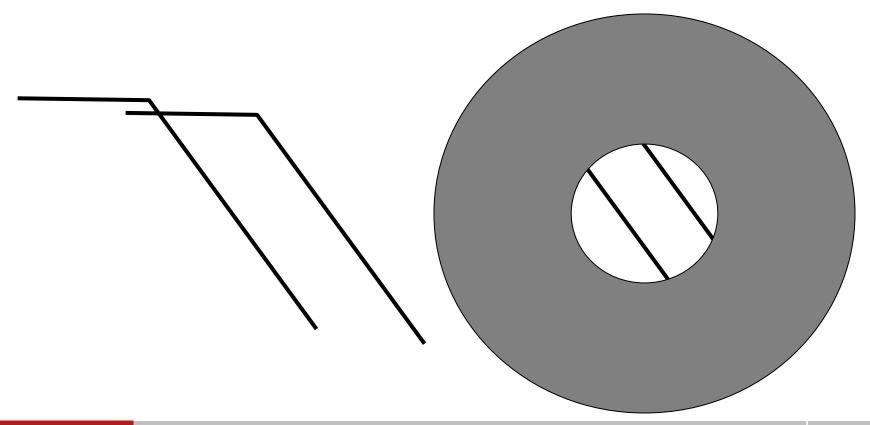
Using gradient notation

$$\nabla I \cdot (\mathbf{u}, \mathbf{v}) \approx -I_{\mathbf{t}}$$

- Linear constraint on motion (u,v) at each pixel
- Can only estimate motion in gradient direction

Aperture Problem (Normal Flow)

 Can only measure motion in direction normal to edge (along gradient)

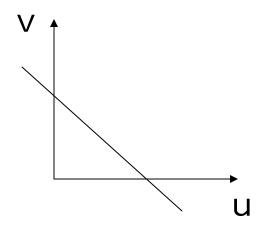


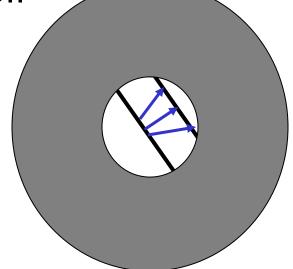
Aperture Problem (Normal Flow)

 Gradient constraint defines line in (u,v) space

$$\nabla I \cdot (\mathbf{u}, \mathbf{v}) \approx -I_{\mathbf{t}}$$

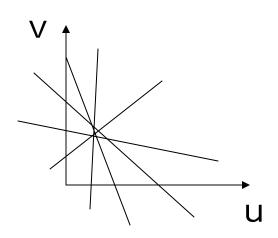
 Methods based solely on per pixel estimates don't work well

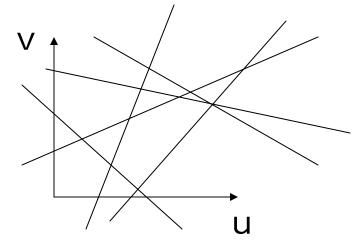




Combining Local Constraints

- Each pixel defines linear constraint on possible (u,v) displacement
 - For set of pixels with same displacement combine constraints to get estimate
 - For pixels with different displacements, somehow identify that is case





Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

$$E(u,v) = \sum_{x,y \in \Omega} \left(I_x(x,y)u + I_y(x,y)v + I_t \right)^2$$

Minimizing

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} \sum I_x I_t \\ \sum I_y I_t \end{pmatrix}$$
$$(\sum \nabla I \nabla I^T) \vec{U} = - \sum \nabla I I_t$$

LHS: sum of the 2x2 outer product of the gradient vector

The Aperture Problem

Let
$$M = \sum (\nabla I)(\nabla I)^T$$
 and $b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$

- Algorithm: At each pixel compute u by solving Mu = b
- M is singular if all gradient vectors point in the same direction
 - e.g., along an edge
 - of course, trivially singular if the summation is over a single pixel or there is no texture
 - i.e., only *normal flow* is available (aperture problem)
- Corners and textured areas are OK

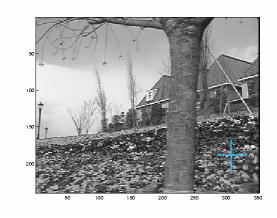
Least Squares Solution

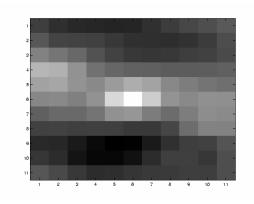
- u minimizing Mu=b
- Compute (M^TM)-1 M^Tb
 - Method of normal equations, can derive from setting partial derivatives to zero
 - Closed form for 2x2

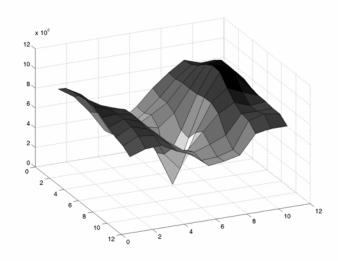
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad A^{-1} = 1/(ad-bc) \begin{pmatrix} d - b \\ -c & a \end{pmatrix}$$

Where det(A) = ad-bc not (near) zero

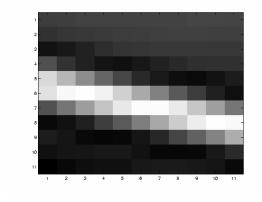
SSD Surface in Textured Area

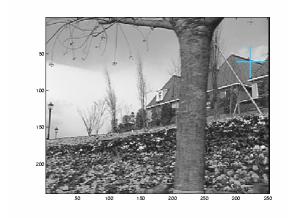


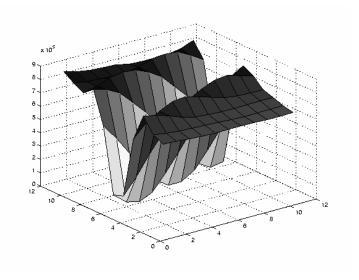




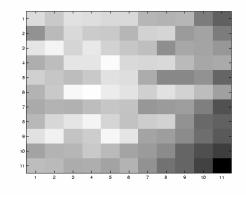
SSD Surface at an Edge

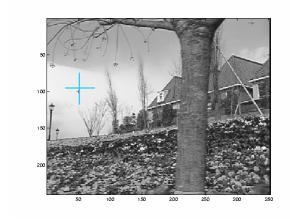


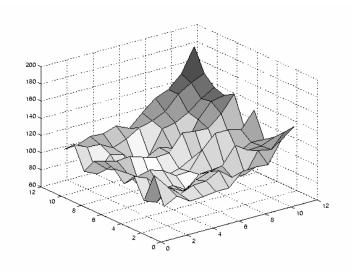




SSD in Homogeneous Area







Translational Motion

- Can estimate small translation over local patch around each pixel
 - Fast using box sums
 - Note relation to corner detection
 - Poor estimate if matrix nearly singular
 - Also poor if patch contains more than one underlying motion
- Improvements
 - Multiple motions robust statistical techniques
 - Larger translations pyramid methods

Multiple Motions

- Robust statistical techniques for finding predominant motion in a region
- Consider approach of iteratively reweighted least squares (IRLS)
 - As illustration of robust methods
- Generalize minimization problem to min_u || W(Mu − b) ||
 - Weight matrix W is diagonal
 - Lessen importance of pixels that don't match
 - Iterate to find "good" weights
 - Note in unweighted case W is identity matrix

Finding Predominant Motion

- Minimization generalizes in obvious way
 u* = (MTW²M)-1 MTW²b
- Determining good weights to use
 - Start by computing least squares solution, uo
 - Iteratively compute better solutions
 - Compute error for each pixel based on previous solution u^{k-1} and use that to set weight per pixel
 - Depends on initial solution being good enough to allow "bad pixels" to have largest error
 - Have to measure error based on image intensity matches, it's the only thing we can measure

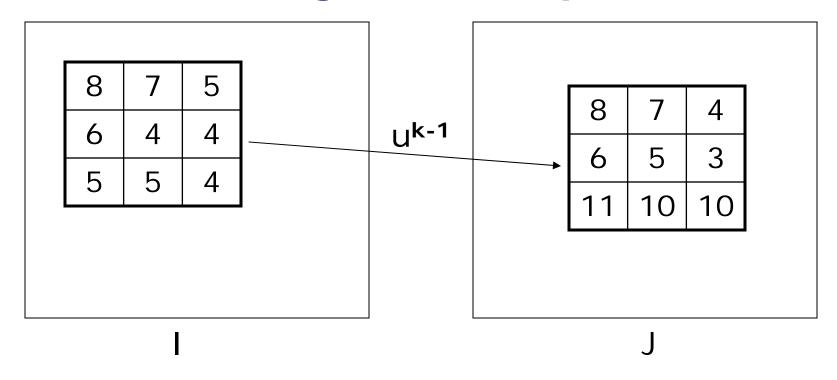
Updating Weights

- To solve for u^k given u^{k-1}
 - Create weights $W^k = diag(w_1^k ... w_n^k)$ where

$$w_i^k = \begin{cases} 1 \text{ if } r_i^{k-1} \le c \\ c/r_i^{k-1} \text{ otherwise} \end{cases}$$

- Where r_i k-1 is measure of error at i-th pixel with motion estimate from iteration k-1
 - Compare i-th pixel value to <u>matching pixel</u> of other image (using u^{k-1} for correspondence)
- And c is set based on robust measure of good versus bad data, such as median
 - Common value is 1/.6745 median(r_i k-1)

Weights Example



$$r_i^{k-1}$$
: 0,0,1,0,1,1,6,5,6

median =
$$1$$
 c ≈ 1.48

$$W_i^k: 1,1,1,1,1,1,24,.29,.24$$

Global Motion Estimation

- Estimate motion vectors that are parameterized over some region
 - Each vector fits some low-order model of how vectors change
- Affine motion model is commonly used

$$u(x,y) = a_1 + a_2x + a_3y$$

 $v(x,y) = a_4 + a_5x + a_6y$

Substituting into gradient constraint eqn.

$$I_{x}(a_{1}+a_{2}x+a_{3}y) + I_{y}(a_{4}+a_{5}x+a_{6}y) \approx -I_{t}$$

 Each pixel provides a linear constraint in six unknowns

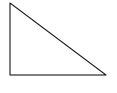
Affine Transformations

- Consider points (x,y) in plane rather than vectors for the moment
 - Linear transformation and translation

$$x' = a_1 + a_2 x + a_3 y$$

 $y' = a_4 + a_5 x + a_6 y$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ a_5 & a_6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_1 \\ a_4 \end{pmatrix}$$



- Maps any triangle to any triangle
 - Defined by three corresponding pairs of points

Why Affine Transformations

- Simple (and often inaccurate) model of projection
 - Point (x,y,z) in space maps to (x,y) in image
 - Orthographic or parallel projection
- Somewhat reasonable model for telephoto lens
- Yields affine transformation of plane for viewing "flat objects"
 - 3D rotation, translation followed by orthographic projection and scaling

Affine Motion Estimation

- Minimization problem become that of estimating the parameters a₁, ... a₆
 - Rather than just two parameters u,v
- Still (over-constrained) linear system but in more unknowns
 - Again use least squares to solve
- Separable into two independent 3 variable problems
 - a₁, a₂, a₃ reflect only u-component of motion
 - a₄, a₅, a₆ reflect only v-component of motion

Affine Motion Equations

- Again compute (D^TD)-1 D^Tt
 - Or (re)weighted version for IRLS
- Now two 3x3 problems, one for I_x and one for I_y, as opposed to single 2x2 problem
- Problem for I_x and u motion (I_y analogous)
 - T remains same, D changes

$$D = \begin{pmatrix} I_{x1} & X_1 & I_{x1} & Y_1 & I_{x1} \\ \vdots & \vdots & \vdots & \vdots \\ I_{xn} & X_n & I_{xn} & Y_n & I_{xn} \end{pmatrix}$$

Multiple (Layered) Motions

- Combining global parametric motion estimation with robust estimation
 - Calculate predominant parameterized motion over entire image (e.g., affine)
 - Corresponds to largest planar surface in scene under orthographic projection
 - If doesn't occupy majority of pixels robust estimator will probably fail to recover its motion
 - Outlier pixels (low weights in IRLS) are not part of this surface
 - Recursively try estimating their motion
 - If no good estimate, then remain outliers

Other Global Motion Models

- The affine model is simple but not that accurate in some imaging situations
 - For instance "pinhole" rather than "parallel" camera model for closer objects
 - Non-planar surfaces
 - Explicit modeling of motion parallax
- Projective planar case

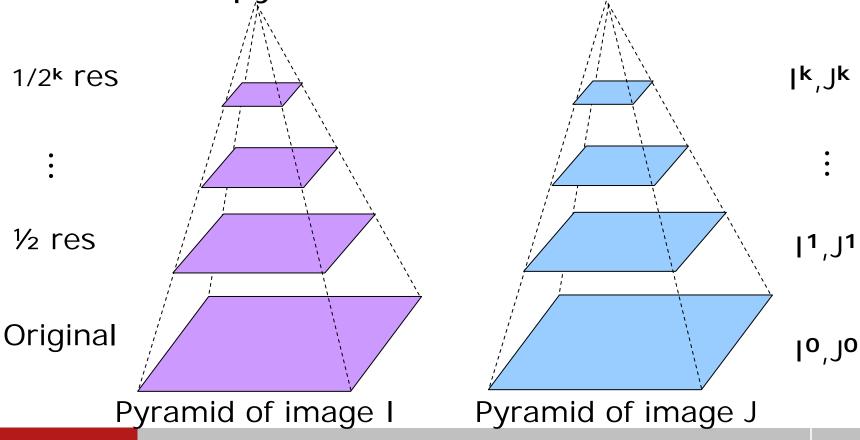
$$x' = (h_1 + h_2x + h_3y)/(h_7 + h_8x + h_9y)$$

 $y' = (h_4 + h_5x + h_6y)/(h_7 + h_8x + h_9y)$
and $u=x'-x$, $v=y'-y$

3D models such as residual planar parallax

Coarse to Fine Motion Estimation

 Estimate residual motion at each level of Gaussian pyramid



Coarse to Fine Estimation

- Compute M^k, estimate of motion at level k
 - Can be local motion estimate (u^k, v^k)
 - Vector field with motion of patch at each pixel
 - Can be global motion estimate
 - Parametric model (e.g., affine) of dominant motion for entire image
 - Choose max k such that motion about one pixel
- Apply M^k at level k-1 and estimate remaining motion at that level, iterate
 - Local estimates: shift I^k by 2(u^k,v^k)
 - Global estimates: apply inverse transform to Jk-1

Global Motion Coarse to Fine

- Compute transformation Tk mapping pixels of I^k to J^k
- Warp image J^{k-1} using T^k
 - Apply inverse of T^k
 - Double resolution of T^k (translations double)
- Compute transformation T^{k-1} mapping pixels of I^k to <u>warped</u> J^{k-1}
 - Estimate of "residual" motion at this level
 - Total estimate of motion at this level is composition of T^{k-1} and resolution doubled T^k
 - In case of translation just add them

Affine Mosaic Example

- Coarse-to-fine affine motion
 - Pan tilt camera sweeping repeatedly over scene
- Moving objects removed from background
 - Outliers in motion estimate, use other scans

SSD

- An alternative to gradient based methods is template matching
 - Treat a rectangle around each pixel as a "template" to find best match in other image
 - Search over possible translations minimizing some error criterion (or maximizing quality)
 - Generally use sum squared difference (SSD) $\Sigma \Sigma (I(x,y)-J(x+u,y+v))^2$
 - Sometimes compute cross correlation
 - Compute over local neighborhood