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Why inverse rendering
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Novel face recognition algorithms, based on three-dimensional information,
promise to improve automated face recognition by dealing with different
viewing and lighting conditions.
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Signal-Processing Framework

* How much information can | extract?
* The problem is well- or ill-posed?
 What is the best way to express the model?

Before only “handwaving” explanation



Spherical Harmonics
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Spherical Harmonics

Analog to Fourier base for angles
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Inverse rendering

* Known geometry
* Fixed ‘far’ light
* Reflection
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Looks like convolution
(and convolution simple in Fourier’s space)



Inverse Rendering

* Plugging in SH
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* Symmetry in BRDF
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Inverse Rendering

* Reflection expanded in SH base
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Mirror BRDF

Pipg = (—1)q 54?9 (l)

» The factor (—1)7 is due to the change of 7 in azimuthal angle
upon reflection.

» As is usual for delta functions, there is no dropoff with £

(“frequency”). This makes the inverse lighting problem
well-conditioned.



Single directional source

Lim = 0mo Yi6 (0) = Smo/\; " (2)

» \We define the light to be in the 4z direction—the “north
pole”. Spherical harmonics have the property that they have
the value 1 (before normalization) at this point if m = 0, and
the value 0 otherwise. Again the inverse lighting problem is
well-conditioned.



Lambertian BRDF

By =2m /2 cos 0 Yy (1) sin 0} db] (3)
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» Since there is no dependence on outgoing angle, p and g
don't matter.

» This is zero for all odd values of 7, except £ =1 (due to the
clamping at the horizon).

> The even terms fall off as £=3. > 99% of the power is
contained in the ¢ < 2 terms (9 spherical harmonics). This
means an approximate characterization easy, but the inverse
lighting problem poorly conditioned.



Lambertian BRDF
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F1 gure 4: Left: Successive approximations to the clamped cosine finetion by adding
more spherical harmonic terms. Forl = 2, we gel a very good approximation. Right:
The solid line is a plot of spherical harmonic coefficients Ay = ANjp;. Forl > 1,
odd terms vanish, and even terms decay rapidly.



Phong BRDF
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s is the specular exponent.

This is approximately a Gaussian with width ~ /s. Beyond
this, the inverse rendering problem begins to become
ill-conditioned.

As s — oo we approach the mirror case.

From the properties of convolution, we can represent the

Phong BRDF by blurring the lighting and using a mirror
BRDF instead.



Phong BRDF
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F1 gure 5: Numerical plots of the Phong coefficients Ay py, as defined by equation 18.
The solid lines are the approximations in equation 19.



Microfacet BRDF
Nepy = exp (— (UE)Q)

o is the surface roughness.

Add a Fresnel factor for non-normal exitance.

Also approximately Gaussian; now the width is ~ o~1.

The trick of blurring the lighting and using a mirror BRDF

instead can work here too for / <« o~ 1.



Decomposition of Lights for
Microfacets

B = Bd‘ + Bs:slt_}w T Bs:fa.st
L = Ld + Ls,sluw + Ls:fast ( )
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» B4 is the diffuse component. This can be represented using
just the first 9 spherical harmonic terms of the lighting.

» Bs glow IS the slow-varying lighting. Here we can blur the
lighting and treat the BRDF as a mirror.

» Bs rast 1 the fast-varying lighting. Here we treat the lighting
as a delta function. The reflection is approximated as a
Gaussian.



BRDF Recovery
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From Complex Geometry
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Questions?
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